D-A15	7 108	COM	PRESSI PRESSI	OR RES	EARCH ET TOT	FACILI	(TY F1	00 HIG	H PRES	SURE		1.	/3 -	1
NCLAS	SIFIE	<u> </u>	COPE	HAVER	OCT 8	4 AFWE	L-TR-	84-293	9 UH	F/G	21/5	NL		_
		τ.												
										d			-	
100		: @			000	¥ }X		* -	⊕ •			-		
					0	_								
			NCLASSIFIED H H	NCLASSIFIED W W COPEN	NCLASSIFIED W H COPENHAVER	NCLASSIFIED W W COPENHAVER OCT 8	NCLASSIFIED IN IN COPENHAVER OCT 84 AFME	NCLASSIFIED IN IN COPENHAVER OCT 84 AFMAL-TR-	NCLASSIFIED W W COPENHAVER OCT 84 AFWAL-TR-84-203	NCLASSIFIED W H COPENHAVER OCT 84 AFWAL-TR-84-2030		NCLASSIFIED N N COPENHAVER OCT 84 AFWAL-TR-84-2030 F/G 21/5	NCLASSIFIED N N COPENHAVER OCT 84 AFMAL-TR-84-2030 F/G 21/5 NL	NCLASSIFIED N N COPENHAVER OCT 84 AFNAL-TR-84-2030 F/G 21/5 NL

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS-1963-A

COMPRESSOR RESEARCH FACILITY F100 HIGH PRESSURE COMPRESSOR INLET TOTAL PRESSURE AND SWIRL PROFILE SIMULATION

William W. Copenhaver

Technology Branch
Turbine Engine Division

October September 1984

Report for Period December 1980 - November 1983

C FILE COP

Approved for Public Release, Distribution Unlimited

AERO PROPULSION LABORATORY

AIR FORCE WRIGHT AERONAUTICAL LABORATORIES

AIR FORCE SYSTEMS COMMAND

WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture use, or sell any patented invention that may in any way be related thereto.

This report has been reviewed by the Office of Public Affairs (ASD/PA) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

WILLIAM W. COPENHAVER Compressor Test Group

Technology Branch

Turbine Engine Division

WALKER H. MITCHELL

Chief, Technology Branch Turbine Engine Division

FOR THE COMMANDER

H. IVAN BUSH Director, Turbine Engine Division

Villiam W. Copenhauer

Aero Propulsion Laboratory

"If your address has changed, if you wish to be removed from our mailing list, or if the addressee is no longer employed by your organization please notify AFWAL/POTX, W-PAFB, OH 45433 to help us maintain a current mailing list".

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
	3. RECIPIENT'S CATALOG NUMBER
AFWAL-TR-84-2030 AD-A157	08
4. TITLE (and Subtitio) COMPRESSOR RESEARCH FACILITY F100 HIGH PRESSURE	5. TYPE OF REPORT & PERIOD COVERED
COMPRESSOR INLET TOTAL PRESSURE AND SWIRL PROFILE	Final Dec 1980-Nov 1983
SIMULATION	4. 850508
	6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(e)	8. CONTRACT OR GRANT NUMBER(s)
William W. Copenhaver	
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10 PROCESS SEE SUSSIE GROUEGE TACK
	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS Program Element: G2203F
Air Force Wright Aeronautical Laboratories (AFSC)	Project: 3066 Task: 17
Wright-Patterson AFB OH 45433	Work Unit: 30661754
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
Aero Propulsion Laboratory (AFWAL/POTX)	October 1984
Air Force Wright Aeronautical Laboratories (AFSC)	13. NUMBER OF PAGES
Wright-Patterson AFB OH 45433	287
14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office)	15. SECURITY CLASS. (of this report)
	Unclassified
	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)	L
Approved for public release; distribution unlimited	
l	•
•	
17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different fro	e Report)
W. Sig, Missi 104 31 A Barta () and see all side and in Stock 29, it sintered in	. Nopuly
· •	
18. SUPPLEMENTARY NOTES	
19. KEY WORDS (Continue on reverse elde if necessary and identify by block number)	
aerodynamic tests wedge probe	
swirl profiles compressor profiles	
pressure profiles instrumentation	i
inlet guide vanes Data Acquisition System	(
20. ABSTRACT (Continue on reverse side if necessary and identify by block number)	
A component test of the F100(3) high pressure com	opressor will be performed in
the Compressor Research Facility (CRF) at Wright-Pat	terson Air Force Base. This
report documents the efforts to obtain total pressur	
test that corresponds to those that exist in an open	
acquisition methods and results of a test to obtain	
detailed. The design and testing efforts to simulat	te these profiles through
preswirl vanes and screens are also defined. The CF	RF F100 inlet hardware con-

figuration detailed in this report provides adequate engine inlet profile

DD , FORM 1473 EDITION OF 1 NOV 65 IS OBSOLETE

UNCLASSIFIED

TABLE OF CONTENTS

SECTION		PAGE
I	INTRODUCTION	1
	1. General	1
	2. Program Objectives	1
	3. Test Schedule	2
II	ENGINE CORE INLET PROFILES	4
	1. General Requirements	4
	2. Data Acquisition System	4
	a. System Hardware	4
	b. System Software and Data Reduction	13
	c. Data System Uncertainty and Verification	15
	3. Data Acquisition	18
	4. Results and Discussion	21
III	EXISTING PRESWIRL VANE TEST	36
	1. General Requirements	36
	2. Test Facility	36
	3. Test Article	38
	a. Facility Adaptation Ring and Diffuser Cone	38
	b. Intermediate Case and Inlet Adapter Duct	44
	c. Preswirl Vane Assembly and Screen Holder	44
	d. Bellmouth Nose Cone Assembly	44
	4. Data Acquisition System	47
	a. Hardware Modifications	47
	b. Software Modifications	54
	5. Data Acquisition	56
	6. Results	58
IV	MODIFIED PRESWIRL VANE AND SCREEN TEST (PHASE I)	67
	1. General Requirements	67
	2. Preswirl Vane and Screen Design	67
	3. Data Acquisition System	70
	a. Hardware Modifications	70
	b. Software Modifications	76
	4. Data Acquisition	78
	5. Data Reduction and Analysis	78

TABLE OF CONTENTS (Concluded)

SECTION		PAGE
٧	MODIFIED PRESWIRL VANE AND SCREEN TEST (PHASE II)	84
	1. General Requirements	84
	2. Preswirl Vane and Screen Modifications	84
	3. Data Acquisition System	84
	a. Hardware Modifications	86
	b. Software Modifications	86
	4. Data Acquisition	89
	5. Data Analysis	89
	a. Swirl Angle Profiles	89
	b. Total Pressure Profiles	102
	c. Discussion	109
VI	MODIFIED PRESWIRL VANE AND SCREEN TEST (PHASE III)	116
	1. General Requirements	116
	2. Preswirl Vane and Screen Modifications	116
	3. Hardware Modification	116
	4. Data Acquisition (Testing)	116
	5. Data Analysis	118
	a. Swirl Angle Profiles	118
	b. Total Pressure Profiles	125
VII	DISCUSSION	135
VIII	SUMMARY	140
IX	CONCLUSIONS	141
X	RECOMMENDATIONS	142
APPENDIX	A ENGINE CORE INLET TEST PREPARATION	143
APPENDIX	B DATA SYSTEM UNCERTAINTY ANALYSIS	152
APPENDIX	C ENGINE CORE INLET TEST DATA	181
APPENDIX	D EXISTING PRESWIRL VANE TEST PREPARATION AND DATA	185
APPENDIX	E MODIFIED PRESWIRL VANE DESIGN AND PHASE I TEST DATA	201
APPENDIX	F MODIFIED PRESWIRL VANE TEST PHASE II PREPARATION AND DATA	234
APPENDIX	G MODIFIED PRESWIRL VANE TEST PHASE III PREPARATION AND DATA	254
REFERENCI	ES .	270

LIST OF ILLUSTRATIONS

FIGURE		PAGE
1	CRF/F100 Inlet Profile Verification Test Program Schedule	3
2	Schematic of Fan and Core Flow Path	5
3	Schematic of Data Acquisition System	6
4	Wedge Probe Sensing Ports	8
5	Traverse to Engine Interface Plate	11
6	Probe to Traverse Alignment Plate	11
7	Pressure Measurement Schematic	12
8	Hewlett Packard 9825T Data Acquisition System Flow Chart	16
9	Spanwise Measurement Locations	19
10	Core Entrance Profile of Temperature at Station 2.5 in F100(3) Engine P072	22
11	Core Entrance Profile of Temperature at Station 2.3 in F100(3) Engine P072	23
12	Core Entrance Profile of Mach Number at Station 2.5 in F100(3) Engine P072	24
13	Core Entrance Profile of Mach Number at Station 2.3 in F100(3) Engine P072	25
14	Core Entrance Profile of Total Pressure at Station 2.5 in F100(3) Engine P072	26
15	Core Entrance Profile of Total Pressure at Station 2.3 in F100(3) Engine P072	27
16	Core Entrance Profile of Static Pressure at Station 2.5 in F100(3) Engine P072	28
17	Core Entrance Profile of Static Pressure at Station 2.3 in F100(3) Engine P072	29
18	Core Entrance Profile of Swirl Angle at Station 2.5 in F100(3) Engine P072	30
19	Core Entrance Profile of Swirl Angle at Station 2.3 in F100(3) Engine P072	31
20	Core Entrance Profile of PT/PT(AVG) at Station 2.5 in F100(3) Engine P072	32
21	Core Entrance Profile of PT/PT(AVG) at Station 2.3 in F100(3) Engine P072	33
22	Test Chamber Schematic	37
23	Airflow Control Schematic	39
24	Exhauster Control Panel	40

FIGURE		PAGE
25	CRF/F100 Inlet hardware Schematic	41
26	Diffuser Cone and Facility Adaptation Ring	42
27	Diffuser Cone Interface Ring	42
28	Inlet Hardware Installation	43
29	F100(2) Intermediate Case	45
30	Preswirl Vane Assembly	45
31	Existing Preswirl Vane	46
32	Screen Holder Assembly	46
33	Slip Ring Support Assembly	48
34	Nose Cone Installation	48
35	Bellmouth Tie Rod Installation	49
36	Test Article	49
37	Schematic of Aero Propulsion Laboratory Test Facility Data Acquisition System	50
38	Quartz Thermometer Installation	52
39	Scanivalve Pressure Measurement Schematic	53
40	Data Acquisition Control Center	55
41	Original Preswirl Vane Station 2.5 Swirl Distribution (Vane Angle = 0°)	59
42	Original Preswirl Vane Station 2.5 Swirl Distribution (Vane Angle = 5°)	60
43	Original Preswirl Vane Station 2.5 Swirl Distribution (Vane Angle = 10°)	61
44	Original Preswirl Vane Station 2.5 Swirl Distribution (Vane Angle = 15 ⁰)	62
45	Original Preswirl Vane Station 2.5 Swirl Distribution (Vane Angle = 20°)	63
46	Original Preswirl Vane Station 2.5 Swirl Distribution (Vane Angle = 25°)	64
47	Original Preswirl Vane Station 2.5 Swirl Distribution (Vane Angle = 30°)	65
48	Original Preswirl Vane Station 2.5 Swirl Distribution	
40	(Vane Angle = 33°)	66
49	Intermediate Case Inner Diameter Flow Path Variations	68
50	CRF/F100 Preswirl Vane. Vane Exit Swirl Distribution	69

FIGURE		PAGE
51	Modified Preswirl Vane	71
52	CRF/F100 Preswirl Vane, Vane Exit Pressure Profile	72
53	Phase I - Screen Configuration	73
54	Modified Preswirl Vane Installation	73
55	F100 Engine Total Pressure Probe	74
56	Modified Preswirl Vane Test (Phase I) Scanivalve Configuration	75
57	Station 2.5 Swirl Profile Comparisons (Modified Preswirl Vanes - Phase I)	80
58	Station 2.3 Swirl Profile Comparisons (Modified Preswirl Vanes - Phase I)	81
59	Station 2.5 Total Pressure Comparisons (Modified Preswirl Vanes - Phase I)	82
60	Stationary Screen Holder	85
61	Phase II - Screen Configuration	85
62	Modified Preswirl Vane Test (Phase II) Scanivalve Configuration	87
63	Modified Vane Position Indicator	88
64	Re Installation Effects on Swirl Profiles, $PSV = 0^{\circ}$	90
65a	Re Installation Effects on Swirl Profiles at Station 2.3, PSV = 10°	91
65b	Re Installation Effects of Swirl Profiles at Station 2.5, PSV = 10°	92
66a	Re Installation Effects on Swirl Profiles at Station 2.3, PSV = 15°	93
66b	Re Installation Effects on Swirl Profiles at Station 2.5, PSV = 15 ⁰	94
67	Re Installation Effects on Swirl Profiles, PSV = 20 ⁰	95
68	Phase I - Screen Configuration Swirl Profiles (PSV = 25°)	97
69	Phase I - Screen Configuration Swirl Profiles (PSV = 27°)	97
70	Phase I - Screen Configuration Swirl Profiles (PSV = 30°)	97
71	Phase I - Screen Configuration Swirl Profiles (PSV = 35°)	97
72	Swirl Profiles (Phase II), PSV = 00	99
73	Swirl Profiles (Phase II), PSV = 10°	99
74	Swirl Profiles (Phase II), PSV = 15°	99
75	Swirl Profiles (Phase II), PSV = 20°	99
76	Swirl Profiles (Phase II), PSV = 25°	100
77	Swirl Profiles (Phase II), PSV = 30°	100

FIGURE		PAGE
78	Swirl Profiles (Phase II), PSV = 35 ⁰	100
79	Swirl Profiles (Phase II), PSV = 27 ⁰	100
80	Swirl Profiles (Phase II), PSV = 28 ⁰	101
81	Swirl Profiles (Phase II), PSV = 29 ⁰	101
82	Swirl Profiles (Phase II), PSV = 29° , Station 2.5, Octant 1	101
83	Swirl Profiles (Phase II), PSV = 29 ⁰ , Station 2.5, Octant 2	101
84	Swirl Profiles (Phase II), PSV = 29 ⁰ , Station 2.5, Octant 6	103
85	Swirl Profiles (Phase II), PSV = 29° , Station 2.5, Octant 7	103
86	Swirl Profiles (Phase II), PSV = 29 ⁰ , Station 2.5, Octant 8	103
87	Traverse Location Behind Inlet Guide Vanes	104
88	Swirl Profiles Behind Inlet Guide Vanes (Phase II), PSV = 15° and 29°	104
89	Re Installation Effects on Station 2.5 Total Pressure Profiles, PSV = 10 ⁰	105
90	Re Installation Effects on Station 2.5 Total Pressure Profiles, PSV = 150	106
91	Re Installation Effects on Station 2.5 Total Pressure Profiles, PSV = 20°	107
92	Phase I - Screen Configuration Total Pressure Profile (PSV = 25°)	108
93	Phase I - Screen Configuration Total Pressure Profile (PSV = 27°)	108
94	Phase I - Screen Configuration Total Pressure Profile (PSV = 30°)	108
95	Phase I - Screen Configuration Total Pressure Profile (PSV = 35°)	108
96	Total Pressure Profile (Phase II), PSV = 0° , Station 2.5	110
97	Total Pressure Profile (Phase II), PSV = 10 ⁰ , Station 2.5	110
98	Total Pressure Profile (Phase II), PSV = 15 ⁰ , Station 2.5	110
99	Total Pressure Profile (Phase II), PSV = 20° , Station 2.5	110
100	Total Pressure Profile (Phase II), PSV = 25 ⁰ , Station 2.5	111
101	Total Pressure Profile (Phase II), PSV = 27 ⁰ , Station 2.5	111
102	Total Pressure Profile (Phase II), PSV = 28 ⁰ , Station 2.5	111
103	Total Pressure Profile (Phase II), PSV = 29 ⁰ , Station 2.5	111
104	Total Pressure Profile (Phase II), PSV = 30 ⁰ , Station 2.5	112
105	Total Pressure Profile (Phase II), PSV = 350, Station 2.5	112
106	Total Pressure Profile (Phase II), PSV = 29°, Station 2.5, Octant 1	112

FIGURE		PAGE
107	Total Pressure Profile (Phase II), PSV = 29°, Station 2.5, Octant 2	112
108	Total Pressure Profile (Phase II), PSV = 29 ⁰ , Station 2.5, Octant 6	113
109	Total Pressure Profile (Phase II), PSV = 29° , Station 2.5, Octant 7	113
110	Total Pressure Profile (Phase II), PSV = 29°, Station 2.5, Octant 8	113
111	Octant 8, Total Pressure Repeatibility, PSV = 29 ⁰	114
112	Total Pressure Profile Behind IGV (Phase II), PSV = 15 ⁰	115
113	Total Pressure Profile (Phase II), PSV = 150, Station 2.5	115
114	Screens with Outer Portion Removed	117
115	IGV Traverse Location, Octant 7	117
116	Swirl Profiles (Phase III), PSV = 0 ⁰	119
117	Swirl Profiles (Phase III), PSV = 10 ⁰	119
118	Swirl Profiles (Phase III), PSV = 15 ⁰	119
119	Swirl Profiles (Phase III), PSV = 20 ⁰	119
120	Swirl Profiles (Phase III), PSV = 25 ⁰	120
121	Swirl Profiles (Phase III), PSV = 30 ⁰	120
122	Swirl Profiles (Phase III), PSV = 35 ⁰	120
123	Swirl Profiles (Phase III), PSV = 22 ⁰	121
124	Swirl Profiles (Phase III), PSV = 23 ⁰	122
125	Swirl Profiles (Phase III), PSV = 23 ⁰ , Station 2.5, Octant 1	123
126	Swirl Profiles (Phase III), PSV = 23 ⁰ , Station 2.5, Octant 2	123
127	Swirl Profiles (Phase III), PSV = 23 ⁰ , Station 2.5, Octant 3	123
128	Swirl Profiles (Phase III), PSV = 23 ⁰ , Station 2.5, Octant 6	123
129	Swirl Profiles (Phase III), PSV = 23 ⁰ , Station 2.5, Octant 7	124
130	Swirl Profiles (Phase III), PSV = 23 ⁰ , Station 2.5, Octant 8	124
131	Swirl Profile Behind IGV (Phase III), PSV = 150, Octant 7	126

IGURES		PAGE
32	Swirl Profile Behind IGV (Phase III), PSV = 23°, Octant 7	126
33	Swirl Profile Behind IGV (Phase III), PSV = 15°, Octant 2	126
.34	Swirl Profile Behind IGV (Phase III), PSV = 23°, Octant 2	126
.35	Total Pressure Profile (Phase III), PSV = 00	127
.36	Total Pressure Profile (Phase III), PSV = 100	127
.37	Total Pressure Profile (Phase III), PSV = 150	127
.38	Total Pressure Profile (Phase III), PSV = 20°	127
L 39	Total Pressure Profile (Phase III), PSV = 25°	128
140	Total Pressure Profile (Phase III), PSV = 30°	128
141	Total Pressure Profile (Phase III), PSV = 35°	128
142	Total Pressure Profile (Phase III), PSV = 220	129
143	Total Pressure Profile (Phase III), PSV = 23°	130
144	Total Pressure Profile (Phase III), PSV = 23°, Station 2.5, Octant 1	131
145	Total Pressure Profile (Phase III), PSV = 23°, Station 2.5, Octant 2	131
146	Total Pressure Profile (Phase III), PSV = 23° , Station 2.5, Octant 3	131
147	Total Pressure Profile (Phase III), PSV = 230, Station 2.5, Octant 6	131
148	Total Pressure Profile (Phase III), PSV = 230, Station 2.5, Octant 7	132
149	Total Pressure Profile (Phase III), PSV = 23 ⁰ , Station 2.5, Octant 8	132
150	Total Pressure Profile Behind IGV (PHASE III), PSV = 230, Octant 2	134
151	Total Pressure Profile Behind IGV (PHASE III), PSV = 15 ⁰ , Octant 2	134
152	Total Pressure Behind IGV (Phase III), PSV = 23 ⁰ , Octant 7	134
153	Total Pressure Behind IGV (Phase III), PSV = 15 ⁰ , Octant 7	134
4-1	P072 Engine Test Data Acquisition Program Listing	150
3-1	Measurement Uncertainty Block Diagram	153
3-2	Uncertainty Analysis Program Listing and Output	159
)-1	Traverse Angular Calibration (S/N ER165263)	187
)-2	Traverse Radial Calibration (S/N ER165263)	188
)-3	Traverse Angular Calibration (S/N ER165262)	189
)-4	Traverse Radial Calibration (S/N ER165262)	190
)-5	Sample of Existing Inlet Preswirl Vane Test Output	191
E-1	CRF/F100 Compressor Rig Inlet Model	203
E-2	CRF/F100 HPC Rig, Preswirl Vane Geometry (I)	204
E-3	CRF/F100 HPC Rig, Preswirl Vane Geometry (II)	205

FIGURE		PAGE
E-4	CRF/F100 Preswirl Vane, Turning Distribution	206
E-5	CRF/F100 Compressor Rig Inlet, Screen Discharge Pressure Profile at Design Flow	207
E-6	Modified Preswirl Vane Test (Phase I) Sample Output	208
E-7	Total Pressure Profile, Station 2.5 (Phase I), PSV=20 ⁰ , Low Flow	217
E-8	Total Pressure Profile, Station 2.5 (Phase I), PSV=5 ⁰ , Mach Number = .45	218
E-9	Total Pressure Profile, Station 2.5 (Phase I), $PSV=10^{\circ}$, Mach Number = .45	219
E-10	Total Pressure Profile, Station 2.5 (Phase I), PSV=15 ⁰ , Mach Number = .45	220
E-11	Total Pressure Profile, Station 2.5 (Phase I), PSV=20 ⁰ , Mach Number = .45	221
E-12	Total Pressure Profile, Station 2.5 (Phase I), PSV=0 ⁰ , Mach Number ≈ .45	222
E-13	Total Pressure Profile, Station 2.5 (Phase I), PSV=5 ⁰ , Mach Number = .54	223
E-14	Total Pressure Profile, Station 2.3 (Phase I), PSV=15 ⁰ , Mach Number = .54	224
E-15	Total Pressure Profile, Station 2.3 (Phase I), PSV=20 ⁰ , Mach Number = .54	225
E-16	Swirl Profile, Station 2.3 (Phase I), PSV=0 ⁰ , Mach Number = .45	226
E-17	Swirl Profile, Station 2.3 (Phase I), PSV=50, Mach Number = .45	227
E-18	Swirl Profile, Station 2.3 (Phase I), PSV=100, Mach Number = .45	228
E-19	Swirl Profile, Station 2.3 (Phase I), PSV=15 ⁰ , Mach Number = .45	229
E-20	Swirl Profile, Station 2.3 (Phase I), PSV=20 ⁰ , Mach Number = .45	230
E-21	Swirl Profile, Station 2.5 (Phase I), PSV= 15^{0} , Mach Number = .54, Octant 1	231
E-22	Swirl Profile, Station 2.5 (Phase I), $PSV=20^{\circ}$, Mach Number = .54, Octant 1	232
E-23	Swirl Profile, Station 2.5 (Phase I), $PSV=20^{\circ}$, Mach Number = .54, Duplication	233
F-1	Modified Preswirl Vane Test (Phase II), Sample Output	235
F-2	CRF/F100 Inlet Flow Path	238
F-3	Wedge Probe Schematic	239
G-1	Data System Zero Point End-to-End Check	255
G-2	Data System End-to-End Check, 1 Psi on PlA	256

Figure 5. Traverse to Engine Interface Plate

Figure 6. Probe to Traverse Alignment Plate

crews before it was tightened down onto the interface plate.

To assure the wedge probe was aligned with the traverse, two critical checks here made. First, the probe head was checked to assure it was perpendicular with the hedge edge. The procedure used to verify probe head alignment is detailed in heference 4. Probe head-to-wedge alignment was assured to within ±.1 minute. The hecond check involved aligning the probe head to the traverse. This was done through the use of another alignment bracket. This bracket slipped over the traverse slide puides and mated against the probe head, forcing it to the zero angle position, as shown in Figure 6. With these checks and procedures, overall flow angle measurement accuracy was ±1 degree.

Pressure obtained from the wedge probe during testing were converted to DC roltages by Druck Model PDCR42 differential pressure transducers. Transducer pressure anges were 0-1 psi, 0-15 psi and 0-50 psi for wedge probe measurements of P2-P3, P1-22 and P1-PATM, respectively. The transducers were bench calibrated before testing to assure their characteristics were linear in the range of interest. The results of this bench calibration are shown in Table A-4, Appendix A. Excitation voltages for these transducers were maintained at 12 volts DC by Preston Model 8800 Universal Signal Conditioners. Amplification of transducer output signals were obtained through the use of Preston model 8300 XWB amplifiers. Gains were set to obtain output levels in the range of 0 to 5 volts DC.

To obtain on-line calibration of the pressure transducers, four Model J scanivalves were incorporated in the test system. Two transducers were referenced to atmospheric pressure, PATM, while one transducer was referenced to another scanivalve to measure differential pressure on the wedge probe. A schematic of the pressure measurement equipment is shown in Figure 7. A scanivalve solenoid controller, Model CTLR2/S2-S6, was used to control the common drive shaft of the four scanivalves. These valves were positioned to six different ports for each test condition. The order of sensing is shown in Table 1.

The calibration facility provided a 2-inch diameter free jet in the Mach number range of .17 to .50 at atmospheric static pressure. With the wedge probe set at a null position, the calibration results for CPT and CPS were 0.998 and 0.905, respectively, over the range of Mach numbers available. Details of the calibration results are shown in Table A-1, Appendix A. Results of the angle sensitivity calibration, shown in Table A-2, Appendix A, demonstrated that nulling of the probe during testing was obtained to within 0.5 degrees in the most severe misalignment case. In post test data reduction, the flow angle was corrected for this misalignment.

No calibrations were performed to determine the effects of probe-wall interactions or flow blockage by the probe. Although these errors do exist, as described in References 2 and 3, the ultimate test objective is to simulate the engine profiles in a compressor test where these interaction effects should be consistent.

The traversing and rotating of the wedge probe were remotely performed by a Northern Research and Engineering Corporation actuation system. Feed back signals from the system's potentiometers were used to record radial and angular positions of the probe. The probe actuator was calibrated to assure the accuracy of flow angle measurement and core duct radial position. Voltages from the potentiometer corresponding to traverse linear travel were correlated with the actual probe travel measured with a vernier caliper accurate to within .001 inch. The calibration results shown in Table A-3, Appendix A were linear within the range of travel; therefore, a straight line fit was used and calibration constants derived. The same procedure was followed for the traverse angular rotation. A protractor divided into .1 degree intervals provided for a calibration accuracy of \pm .1 degree. Through repetitive calibrations of the linear and angular potentiometers, repeatability was determined to be within \pm .0002 inch and \pm .5 degree, respectively. These accuracies were suitable for the program requirements.

Traverse to engine alignment methods were developed in an effort to maintain the accuracy required in flow angle measurement, as referenced to the engine axis. These methods required that an alignment plate, shown in Figure 5, be placed on the traverse to engine interface plate. The traverse was drawn up to this plate by cap

Figure 4. Wedge Probe Sensing Ports

connected to different channels of the scanner. These channels were read by the voltmeters by the scanner on command from the computer. Two digital channels were used to operate the scanivalve. The 3456A voltmeter is a six-digit integrating AC-DC digital voltmeter capable of storing up to 350 readings at a time. It also has a math option which allows it to determine maximum, minimum, average, and standard deviation of a given set of readings. This option was utilized in test data analysis. The 3456A was used for all pressure transducer calibrations and measurements. All data were printed out on-line by the HP 9871A printer.

The inlet profile pressures and temperatures were obtained thru a wedge probe sensing element. The probe used in the experiment was a .25-inch diameter United Sensor Model WT-250-25-Cu/C wedge probe. This probe senses one temperature and three pressures (P1, P2, and P3), as shown in Figure 4. The temperature was measured by a copper constantan thermocouple. P1 is proportional to the total pressure, while the average of P2 and P3 is proportional to the static pressure. The flow angle was determined by the nulling method. In this procedure, the probe was rotated so that each of the side ports read the same pressure. Flow direction is then determined from the physical position of the probe.

Prior to testing, the wedge probe was calibrated to determine its total and static pressure coefficients, CPT and CPS, which are defined as

$$CPT = \frac{P1 - PS}{PT - PS} \tag{1}$$

and

$$CPS = \frac{(P1 - P2) + (P1-P3)}{2(PT - PS)}$$
 (2)

where PT and PS are the total and static pressure in the calibration nozzle. After engine testing, an additional calibration was performed to determine flow angle sensitivity, as there were difficulties in obtaining an absolute null position during portions of the test.

Figure 3. Schematic of Data Acquisition System

Figure 2. Schematic of Fan and Core Flow Path

SECTION II

ENGINE CORE INLET PROFILES

1. GENERAL REQUIREMENTS

This phase of the program involved the development of a transportable data acquisition system and measurement of F100(3) HPC inlet profiles with this system. (Ref. I) The test was performed at a test stand located at Pratt and Whitney Aircraft, Florida. The core compressor inlet profiles acquired were total pressure, static pressure, temperature and swirl angle. A cutaway of the F100 fan and core flow path investigated is presented in Figure 2. Shown in this figure are the two axial locations that were investigated. A wedge probe was traversed across the core flow to obtain the desired profiles at these two axial locations. Since the 2.5 location is further from the last rotor row of the fan (approximately four chord widths downstream), this position should have less time-varying pressure and temperature fluctuations associated with the rotating stages of the fan. For this reason, the 2.5 location was considered the primary position for measuring the time-averaged pressures and temperatures, while data obtained at station 2.3 were used for comparison.

2. DATA ACQUISITION SYSTEM

a. System Hardware

The data system hardware was selected for its high acquisition rate and modular design. These characteristics allowed for the required data to be obtained in a short period of time at a remote test site. A schematic of the data acquisition hardware is shown in Figure 3.

The data acquisition system consisted of a Hewlett Packard 9825T desk top computer, 3487A scanner, 3456A voltmeter, and a 9871A printer. The 9825T computer controlled the scanner and voltmeter by an IEEE 488 standard interface and the printer via a 16-bit parallel interface. In addition, the computer was used for online data reduction. The 3497A scanner has 20 analog data acquisition channels, 16 digital channels, an internal clock, and a built-in 5-1/2 digit integrating digital voltmeter. Four analog channels were used for data acquisition and two for measuring probe position. The three pressure transducers and the thermocouple were

CY - 83	JEMAMJASOND										I	I	I	
CY - 82	JEMAMJJASOND				Ī	I	Ì	Ι	I					
CY-8I`	JIFMAMJJASOND	T	I									-		
	0	INSTRUMENTATION SYSTEM BUILDUP AND CHECKOUT	FIOO (3) ENGINE TEST	ENGINE PROFILE DATA REDUCTION	APL FACILITY PREPARATION	EXISTING PRESWIRL VANE TEST	EXISTING PRESWIRL DATA REDUCTION	MODIFIED PRESWIRL VANE FACILITY PREP	MODIFIED PRESWIRL VANE & SCREEN TEST (PHASE I)	PHASE I DATA REDUCTION	PHASE IL TEST	PHASE IL DATA REDUCTION	PHASE III TEST	PHASE III DATA REDUCTION AND PROGRAM DOCUMEN- TATION

CRF/F100 Inlet Profile Verification Test Program Schedule

3. TEST SCHEDULE

The tests were completed over a period of 37 months, starting December 1980. The five tests progressed as shown in Figure 1.

SECTION I

INTRODUCTION

GENERAL

いっというのとは、こととととなると、このできないのでは、これできないのでは、これできないとのできないという。

The F100 gas turbine engine currently powers the Air Force F-15 and F-16 aircraft. The compression section of this engine consists of a three-stage fan followed by a ten-stage High Pressure Compressor (HPC). A component test of the F100 HPC will be performed in the Compressor Research Facility (CRF) of the Aero Propulsion Laboratory (APL) at Wright-Patterson Air Force Base, to investigate its stall and post stall characteristics. This testing will require that the high pressure compressor entrance profiles be simulated to obtain results which correspond to actual engine operation. Since these entrance profiles had never been measured, a program was designed to experimentally measure the total and static pressure, temperature and flow angle profiles at the HPC entrance of an F100 Series 3 engine (F100 (3)), (S/N P072).

The measured profile data were then used as design data for a set of inlet screens and vanes. These vanes and screens will simulate the engine fan discharge profiles for the HPC test. The manufactured screens and vanes were tested in Room 24 of Building 18 of the Air Force Wright Aeronautical Laboratories to verify their simulation capabilities. Five separate test periods were necessary to achieve the program goals. These tests are described in Sections II thru VI. The program discussion and conclusions are presented in Section VII and VIII.

2. PROGRAM OBJECTIVES (Like quite vanes; presunt vanes,

The program objectives were to measure the actual F100 engine HPC inlet (pressure profiles within +1 percent and swirl angle profiles within +1 degree. With these results as input data, a set of screens and vanes were designed and manufactured by Pratt & Whitney Aircraft (P&WA) as part of the overall CRF F100 contract. The screens and vanes designed were tested to determine if the profiles they produce meet the goal of the CRF F100 contract: to simulate actual engine HPC inlet profiles during the CRF component test. This will assure that test results can be compared to engine performance results.

LIST OF SYMBOLS (Concluded)

α *	Blade Inlet Angle
α*	Blade Outlet Angle
α*3 α'3	Air Outlet Angle
α _{ch}	Blade Chord Angle
Υ	Ratio of Specific Heats for Gas Mixture
0*	Blade Camber Angle
θ'	Turning

LIST OF SYMBOLS

A	Area
A_1	Amplifier Gain (Trunsducer 1)
p T	Chord Length
CPS	Static Pressure Coefficient
CPT	Total Pressure Coefficient
Eo	Amplifier Output Voltage
E _{o f}	Amplifier Offset Voltage
E _s	Transducer Supply Voltage
E _t	Transducer Output Voltage
g _c	A Constant that Relates Force, Mass, Length, and Time
LER	Leading Edge Radius
M	Mach Number
m	Mass Flow Rate
mcorr	Corrected Mass Flow Rate
P1	Wedge Probe Total Pressure
P2	Wedge Probe Side Face Pressure (Left)
Р3	Wedge Probe Side Face Pressure (Right)
P4	Bellmouth Wall Static Pressure
P5	Station 2.5 O.D. Wall Static Pressure
P6	Total Pressure at Station 2.5 (Rake)
PATM	Atmospheric Pressure
PS	Static Pressure
PT	Total Pressure
P _T avq	Average Spanwise Total Pressure
R	Gas Constant for Air
S	Sensitivity of Transducer
t	Blade Thickness
TER	Trailing Edge Radius
TT	Total Temperature
U	Uncertainty
٧	Volume

LIST OF ILLUSTRATIONS (Concluded)

FIGURE		PAGE
G-3	Data System End-to-End Check, 3 Psi on P1A	257
G-4	Data System End-to-End Check, 5 Psi on P1A	258
G-5	Data System End-to-End Check, 1 Psi on P1B	259
G-6	Data System End-to-End Check, 5 Psi on P1B	260
G-7	Data System End-to-End Check, 1 Psi on P3A	261
G-8	Data System End-to-End Check, 1 Psi on P38	262
G-9	Data System End-to-End Check, 1 Psi on PT Rake	263
G-10	Data System End-to-End Check, 3 Psi on PT Rake	264

LIST OF TABLES

TABLE		PAGE
1	Order of Pressure Measurement	13
2	Data Acquisition System Uncertainty	17
3	Radial Location for Traverse Probe Stops	20
4	Pressure Sensing Order	54
5	Traverse Control Settings	57
6	Inlet Hardware Test Results	139
A-1	Wedge Probe Calibration Results (S/N B1625)	144
A-2	Wedge Probe Angle Calibration Results	145
A-3	Traverse Calibration	146
A-4	Transducer Bench Calibrations	147
C-1	Traverse Positioning Chart	182
C-2	F100(3) Engine P072 Core Inlet Profile Data at Position 2.5	183
C-3	F100(3) Engine P072 Core Inlet Profile Data at Position 2.3	184
D-1	Transducer Bench Calibrations (Inlet Preswirl Vane Test)	186
D-2	Existing Inlet Preswirl Vane Data	192
E-1	Modified Preswirl Vane Test Phase I Data	209
F-1	Modified Preswirl Vane Test Phase II Data	242
G-1	Modified Preswirl Vane Test Phase III Data	265

Figure 7. Pressure Measurement Schematic

TABLE 1 - ORDER OF PRESSURE MEASUREMENT

Measurement Order	4	Transducer	
	0-1 psid	0-15 psid	0-50 psid
1	0 psid	0 psid	0 psid
2	0 psid	4 psid	35 psid
3	P3-P2	P1-P2	PT-PATM
4	P2-P3	P1-P3	P1-PATM
5	0 psid	4 psid	35 psid
6	0 psid	0 psid	0 psid

The scanivalve remained on a port for five seconds in order to stabilize the pressure in the system. After this stabilization time, 36 scans of the transducer output were recorded and averaged by the acquisition system. The scheme in Table 1 provided for a zero point calibration of the 0-1 psid transducer and a two-point calibration of the 0-15 and 0-50 psid transducers before and after the transducers were exposed to the test ports.

A zero point calibration of the 0-1 psid transducer was performed since this transducer was used to align the probe with the flow direction by nulling the pressure difference between the side ports of the wedge probe. A two-point calibration of the other two transducers was performed to eliminate bias due to transducer drift that might occur during testing. Calibration pressures of 4 and 35 psig were supplied by two Model MK100 pneumatic deadweight testers. Two of these calibrations were performed for each test condition to determine if a transducer drifted during the test measurement.

b. System Software and Data Reduction

The complete data acquisition process was preprogrammed on the HP 9825T calculator. The system software commanded opening and closing of relays necessary to convey information to and from the data acquisition hardware. The program measured traverse positions, transducer calibration values, probe pressures and probe temperatures. With this information, transducer calibration coefficients and reduced parameters of temperature, total pressure, static pressure, Mach number, and swirl angle were calculated. The program provided a printout of reduced data in

engineering units as they were obtained during testing, thus minimizing the need for post test data reduction.

The first step of the reduction program was to obtain a straight line transducer calibration from the on-line calibration. Details of this procedure are shown in Appendix A. After the two calibrations (one before data acquisition and one after) were compared and no appreciable change was evident, the data reduction was continued. The raw data in volts were then reduced to actual probe pressures (P1-PATM, P1-P2, P1-P3, P2-P3) and temperatures. These pressures were then converted to profile pressures using calibration coefficients obtained in previous probe calibrations. The total and static pressures and Mach number of the free-stream airflow were calculated from the following relations.

Static Pressure

From Equation 2

$$PT-PS = \frac{(P1-P2) + (P1-P3)}{2(CPS)}$$
 (3)

where P1, P2, P3 are probe measured pressures indicated in Figure 4. Also from Equation 1:

$$PS = P1-CPT \times (PT-PS) \tag{4}$$

Since P1 is not measured directly, the equation must be rewritten as follows:

$$PS = (P1-PATM) - CPT \times (PT-PS) + PATM$$
 (5)

The final form is found by substituting Equation 3 into Equation 5.

$$PS = (P1-PATM) - CPT \times \frac{(P1-P2) + (P1-P3)}{2(CPS)} + PATM$$
 (6)

Total Pressure:

$$PT = PS + (PT-PS)$$
 (7)

Substitute Equation 3 into this identity:

$$PT = PS + \frac{(P1-P2) + (P1-P3)}{2(CPS)}$$
 (8)

Combining this with Equation 6

$$PT = (P1-PATM) + \frac{(P1-P2) + (P1-P3)}{2(CPS)} (1-CPT) + PATM$$
 (9)

Mach Number

The Mach number is calculated assuming isentropic ideal gas conditions from the following equation:

$$M = \left\{ \frac{2}{\Upsilon - 1} \left[\left(\frac{PT}{PS} \right)^{\Upsilon - 1/\Upsilon} - 1 \right] \right\}^{1/2}$$
(10)

The data acquisition software flow chart detailing the steps taken and decisions made during the test is shown in Figure 8. A complete program listing is shown in Appendix A.

c. Data System Uncertainty and Verification

The data system was optimized to obtain a theoretical acquisition uncertainty of ± 1 percent over the range of total and static pressures measured by the probe sensing ports. The total and static pressures measured by the wedge probe ranged from 18 to 46 psi and 17 to 34 psi, respectively. The data uncertainty analysis involved the development of uncertainty criteria for the system defined as a function of component uncertainties and weighting functions, as described in Reference 5. During the development of the data system, it was determined that an on-line calibration of the pressure transducers was required to reach the goal of ± 1 percent uncertainty over the complete range of measured pressures. Data uncertainty for the system described in Section VI.2.a is shown in Table 2 for pressures in the range of interest with an on-line calibration and a maximum of ± 1 0 change in temperature between calibration times. Details of the uncertainty analysis procedure are given in Appendix B.

The correct operation of the data system was verified by placing known pressures on the wedge probe tubing for P1 thru P3. These pressures were supplied by a dead-weight tester. The reduced data printed out were crosschecked with the pressure input to assure proper function of the data acquisition system. The system

THE SAME BEST OF THE PROPERTY OF THE PROPERTY

Figure 8. Hewlett Packard 9825T Data Acquisition System Flow Chart

こうしょう 日本ののののののののの

TABLE 2

DATA ACQUISITION SYSTEM UNCERTAINTY

Total Pressure Psig	Uncertainty (Percent of	Reading)	Static Pressure	Uncertainty Psig (Percent of	Reading)
2.26	2.3		1.75	3.1	
4.52	1.2		3.33	1.8	
6.26	1.0		3.97	1.7	
10.45	.7		6.95	1.2	
12.91	.6		8.85	1.0	
16.24	.5		11.52	.9	
18.57	.5		13.05	.8	
20.23	.4		14.40	.8	
21.56	.4		14.85	.9	
24.23	.5		15.74	1.0	
26.89	.5		17.07	1.0	
29.55	.5		18.40	1.0	
30.88	.5		19.11	1.0	
32.21	.4		20.18	1.0	
33.55	.5		20.18	1.0	
36.21	.5		21.73	1.0	

produced reduced data for the dead-weight tester input pressure within the uncertainty of ± 1 percent. This verification was performed over the complete range of pressures to be measured.

3. DATA ACQUISITION

The data acquisition system was transported to Pratt and Whitney Aircraft Group, Government Products Division. The test was undertaken at one of the sea level engine test stands at P&WA. The engine used in the test was an F100(3), Serial Number P072. The traverse actuation system was installed on the engine at the 2.5 station, and the wedge probe was inserted and aligned. The remainder of the data acquisition system was prepared for the test in a temporary data acquisition room next to the the test cell. After all data system preparations and engine check-outs were completed, testing began.

The test plan was to acquire 12 data points across the span of the core duct at the 2.3 and the 2.5 positions, as described in Figure 9 and Table 3. These traverses were duplicated for fan speeds of 9,500, 8,500, 6,500 and 4,500 RPM. When the engine had stabilized at the desired speed, the data taking process began by translating the wedge probe to the desired position. A schedule for these positions is shown in Table C-1, Appendix C. The wedge probe was then rotated until a zero difference was achieved between pressures P2 and P3. Nulling was performed with the use of a direct reading digital voltmeter. To initialize the data acquisition program, atmospheric pressure and temperature, engine fan and core speed were entered into the Hewlett Packard 9825T calculator. At the start of the program, the traverse positions and wedge probe total temperature were initially measured. The calculator then controlled the scanivalve to obtain the pressures shown in Table 1. After the pressure data were recorded, the traverse position and wedge probe temperature were again measured to determine if any changes had occurred during the data acquisition. The calibration constants obtained before and after the data measurements were compared to each other and to off-line calibration constants measured before the experiment. If this comparison was to within .05 percent of slope and intercept, the data were accepted and the calculator would reduce the data to engineering units. The following reduced data were printed out on-line after each point.

TABLE 3

RADIAL LOCATION FOR TRAVERSE PROBE STOPS

	Station 2.3 Distance from Centerline in.	Station 2.5 Distance from Centerline in.
I.D.	10.09	8.75
"A"	10.332	9.034
"B"	10.575	9.318
"C"	10.817	9.602
"D"	11.059	9.885
"E"	11.302	10.169
"F"	11.544	10.453
"G"	11.786	10.737
"H"	12.028	11.021
"I"	12.271	11.305
"J"	12.513	11.588
н К н .	12.755	11.872
"L"	12.998	12.156

- Time of day obtained from internal clock
- Date
- Point Number
- Patm
- Maximum/minimum/average for P1-Patm, P1-P2, P1-P3 in psid
- Fan and core speed.
- Traverse radial position and degree of rotation and their respective percent changed during data taking
 - TT, PT, PS, Mach Number, Swirl Angle

During each data point, the program stored the following on tape:

- All individual points
- Both sets of calibration constants
- Values printed out in the short form printout mentioned above

The procedure, starting with translating the wedge probe, was then duplicated for all 12 positions of the core inlet span. When a complete traverse was accomplished, the engine speed was changed and allowed to stabilize. The complete process of acquiring the traverse points was repeated. This was done for four engine speeds at the 2.5 position and two engine speeds at the 2.3 position. Time constraints forbid acquisition of data at the two other engine speeds for the 2.3 position.

The total time required to obtain the 72 data points was approximately six hours. No unforeseen problems were encountered during the data acquisition phase of this test.

4. RESULTS AND DISCUSSION

The high pressure compressor entrance profiles measured during the experimentation are shown in Figures 10 through 21. The tabular data obtained in this test are presented in Tables C-2 and C-3, Appendix C. For each plotted parameter, there are four profiles shown for measurements at the 2.5 location. In addition, two profiles taken at 2.3 location of that same parameter are shown for comparison.

Figure 10. Core Entrance Profile of Temperature at Station 2.5 in F100(3) Engine P072

igure 11. Core Entrance Profile of Temperature at Station 2.3 in F100(3) Engine P072

gure 12. Core Entrance Profile of Mach Number at Station 2.5 in F100(3) Engine P072

jure 13. Core Entrance Profile of Mach Number at Station 2.3 in F100(3) Engine P072

Figure 23. Airflow Control Schematic

ecting the inlet hardware to the exhauster facility in the basement of Building Preliminary test indicated that two Ingersol Rand exhausters connected in parallel draw airflows through the chamber up to approximately 60 lbm/sec. The flow s through the inlet hardware were controlled by three valves, as shown in Figure These valves were actuated pneumatically from the test cell control room by the uster control panel, shown in Figure 24. A filter house was provided at the thardware bellmouth to reduce particulate build-up on the instrumentation.

TEST ARTICLE

The CRF/F100 inlet hardware utilized for this program was designed and manufactured ratt and Whitney Aircraft for the core compressor test program. During the inlet profile tests, the core compressor module was not connected to the inlet hardware. core was separated from the inlet at the rear flange of the intermediate case. efore, the test article, as defined for this program, consisted of the following:

- (1) Bellmouth Nose Cone Assembly
- (2) Screen Holder Assembly
- (3) Preswirl Vane Row
- (4) Inlet Adaptor Duct
- (5) Intermediate Case
- (6) Diffuser Cone
- (7) Facility Adaptation Ring

thematic of the hardware is shown in Figure 25. The hardware was designed and afactured early in the CRF/F100 contract effort so inlet profile verifications does completed before compressor test article assembly.

a. Facility Adaptation Ring and Diffuser Cone

An adapting ring was required to connect the intermediate case rear flange he test chamber. This ring was designed to minimize flow path distortion from intermediate case inlet guide vane (IGV) exit to the entrance of the chamber. This ring was also designed to support the test article without the need of external supports. Adaptation ring installed on the test article is shown in Figure 26. In another art to minimize losses from the intermediate case to the large test chamber opening, berglass diffuser cone was designed. The diffuser cone (shown in Figure 26) was ached to the intermediate case bearing housing through an interface ring shown in the 27. With the adaptation hardware, the intermediate case and diffuser assembly doe installed on the front flange of the test chamber, as shown in Figure 28.

SECTION III

EXISTING PRESWIRL VANE TEST

. GENERAL REQUIREMENTS

Review of the F100(3) engine HPC inlet pressure and swirl angle profiles indicated new preswirl vane (PSV) design would be required to obtain such profiles in the RF/F100 inlet. Existing vanes available from a previous F100 core compressor test described in Reference 7) would not provide the profiles detailed in Section II.4. The existing preswirl vanes were tested primarily to debug the data acquisition system and test method for the future modified vane tests. They were also tested to determine the swirl profiles they produced. The test required that the existing preswirl vanes is installed in inlet hardware designed for the CRF/F100. This hardware was then notabled in a flow test cell in the Aero Propulsion laboratory at Wright-Patterson are like the facility provided compressor corrected mass flow rates equivalent to those encountered in the engine test. With these airflows, swirl profiles resulting from the existing vanes were measured at station 2.5 and compared with those detailed in Section III.4. Section III defines the inlet hardware and test facility. It also letails the changes required in the data acquisition system described in Section II.2 to accommodate this test.

2. TEST FACILITY

A facility that could provide 54 lbs/sec corrected mass flow through the CRF/F100 inlet hardware was necessary to determine the swirl angle and Mach number profiles generated by the existing vanes. Preliminary testing of an engine test cell in Room 24, Building 18E of the Aero Propulsion Laboratory indicated that it could provide the necessary flow capacity. Modifications to this engine test facility were required to accommodate the CRF/F100 inlet hardware. The facility was equipped with an altitude chamber that provided altitude and increased Mach number engine testing. The altitude chamber was not required for the CRF/F100 inlet duct test because the capability for ram air conditions do not currently exist in the CRF. Therefore, the inlet hardware was mounted on the inlet flange outside of the chamber to make easy access to the hardware, as shown in Figure 22. The chamber was used as a large diameter pipe

AFWAL-TR-84-2030

Inlet preswirl vanes will be used to simulate the entrance swirl angle profiles, while a series of screens will be used to simulate the total pressure profiles. Since the CRF currently has no temperature distortion capability, no attempt will be made to simulate the temperature profiles.

The largest change between the two axial locations occurred in the swirl angle profiles. Swirl angle is defined as 90 degrees minus the angle of flow with respect to the engine axis. This 10-15 degree change to a more axial flow at the 2.5 location is probably a result of the eight radial structural supports in the intermediate case between the 2.3 and 2.5 locations of the F100 engine. The swirl angle profile at the 2.5 location remained relatively constant throughout the speed range of the engine, varying only ± 2.5 degrees from an average swirl angle profile. However, across the flow path, the swirl angle varies as much as 13 degrees. It is possible that this spanwise variation is due to variable angle of attack on the struts at the different spanwise locations. The angle of attack variations can result in stalling of the intermediate case struts at different spanwise locations. This stalling would also result in an inlet distortion to the compressor thereby reducing performance. Stalling of the struts can be the reason for this spanwise swirl angle variations. The limited amount of data obtained prohibits conclusive proof of that phenomenon. It is, therefore, only suggested as a possible explanation of the phenomenon.

The mass average value of the plotted parameters in the other profiles should be the same for both the 2.3 and 2.5 locations since the flow area at each location is the same to within 1 percent and no energy is intentionally added or removed from the airflow. The variations in the 2.3 and 2.5 profiles that exist at the nominal 4,700 RPM engine speed are due to a slightly lower engine speed while the 2.3 location data were taken than when the 2.5 data were obtained. The variations between the two locations at the higher engine speed is probably a result of higher uncertainty in the pressure reading due to the fluctuation caused by the fan rotor, as indicated in References 3 and 5.

The engine profiles that were obtained in this experiment will be used as a design tool to obtain simulated profiles in a subsequent high pressure compressor test. Even though the effects of probe blockage and probe wall interactions do exist, these effects will be the same in both the engine test and the compressor test since the hardware is approximately the same. The significant effect that cannot be simulated will be the fluctuation effects of pressure, swirl angle and temperature resulting from the rotating fan blades. The profiles measured at the 2.5 location, approximately four mean chord diameters downstream from the last rotor row of the fan, should be relatively unaffected by these fluctuations, as indicated in Reference 6.

Figure 21. Core Entrance Profile of PT/PT(AVG) at Station 2.3 in F100(3) Engine P072

Figure 20. Core Entrance Profile of PT/PT(AVG) at Station 2.5 in F100(3) Engine P072

Figure 19. Core Entrance Profile of Swirl Angle at Station 2.3 in F100(3) Engine P072

Figure 18. Core Entrance Profile of Swirl Angle at Station 2.5 in F100(3) Engine P072

Figure 17. Core Entrance Profile of Static Pressure at Station 2.3 in F100(3) Engine P072

Figure 16. Core Entrance Profile of Static Pressure at Station 2.5 in F100(3) Engine P072

Figure 15. Core Entrance Profile of Total Pressure at Station 2.3 in F100(3) Engine P072

Figure 14. Core Entrance Profile of Total Pressure at Station 2.5 in F100(3) Engine P072

Figure 24. Exhauster Control Panel

Figure 25. CRF/F100 Inlet hardware Schematic

Figure 26. Diffuser Cone and Facility Adaptation Ring

Figure 27. Diffuser Cone Interface Ring

Figure 28. Inlet Hardware Installation

b. Intermediate Case and Inlet Adapter Duct

The intermediate case for the CRF/F100 test article is an F100 Series 2 intermediate case. This is not the same case as was on the engine (S/N P072) discussed in Section II. The differences between these two designs will be discussed later in this report.

The Series 2 intermediate case assembly consists of an 8 strut compressor shaft support ring and a 90 vane inlet guide vane assembly. The support struts are airfoil shapes positioned at a 20 degree angle of attack from the axial position. The intermediate case mounted to the test chamber is shown in Figure 29. Measurement locations were provided at axial station 2.5 for wedge probe traverse between all 8 support struts, defined as octants 1 through 8 clockwise looking forward. Three 2.3 traverse locations were also available. The inlet adapter duct provides for transition from the intermediate case splitter leading edge to the preswirl vane assembly.

c. Preswirl Vane Assembly and Screen Holder

The existing preswirl vanes (PSV) were installed in a support ring that allowed for simultaneous actuation of the vanes through a sync ring assembly. The vane row consisted of 40 rotatable vanes. The vanes installed in the support ring are shown in Figure 30. Vane position was determined for this test by a vernier angle indicator attached to one of the vanes. The PSV leading edge is axial for a 20 PSV setting. The detailed vane design is shown in Figure 31.

The button end is positioned at the flow path I.D. wall. The threaded end allows for attachment to the sync ring. The screen holder assembly was designed such that the screen pattern could be rotated for distortion testing if necessary. Circumferential distortion variations were not part of this program so this feature of the screen holder was not utilized. The screen holder assembly was designed with 12 screen support struts and attached to the vane assembly, as shown in Figure 32. The desired screen pattern was attached with wire to the screen holder struts. The preswirl vane and screen holder assemblies are attached to the inlet adapter duct described in Section III.3.b.

b. Bellmouth Nose Cone Assembly

To assure a smooth flow transition into the screen holder assembly, a bellmouth and nose cone were required. The nose cone, which provided for a smooth

Figure 29. F100(2) Intermediate Case

Figure 30. Preswirl Vane Assembly

Figure 31. Existing Preswirl Vane

Figure 32. Screen Holder Assembly

inner flow path wall, was supported by the slip ring assembly mount shown in Figure 33. The slip ring was not required for this test as the compressor was not attached. The nose cone designed by P&WA was installed over the slip ring assembly mount, as shown in Figure 34. To provide the outer flow path inlet transition, a long throat elliptical fiberglass bellmouth was designed and manufactured by P&WA. The bellmouth was positioned to the nose cone through the use of four tie rods, as shown in Figure 35. These tie rods were not supporting members. They were for positioning and stability only during the test. The filter house was connected to the bellmouth entrance to complete the test set up. Figure 36 shows the entire inlet installed on the test chamber with the filter house attached. This test configuration was used for the remaining test programs. Minor changes were made between test periods and are detailed in their respective sections of this report.

4. DATA ACQUISITION SYSTEM

The data required for this test were the same as obtained in the engine test described in Section II. The magnitudes of the pressures and temperatures were reduced from the levels obtained in the engine test. Swirl measurements were not affected. The Room 24 test facility created absolute pressure measurements in the inlet hardware which were less than atmospheric because exhausters were used as the air flow source. The above atmospheric pressures encountered in the engine were due to the fan upstream of the core compressor. The reduced pressures encountered during this test required data acquisition system changes. Additional measurement requirements for this test also resulted in data acquisition system changes from the engine test system (Section II.2). Temperature measurements were obtained although no analysis or comparison with engine data were performed. Temperature distortion capabilities are not currently available in the CRF. All data acquisition system changes are detailed in the following subsections.

a. Hardware Modifications

All data acquisition hardware used during engine testing at Pratt and Whitney Aircraft was transferred back to Wright-Patterson Air Force Base and installed in the Room 24 test facility described in Section III.2. To accommodate the test at the facility, additions and changes were made to the data acquisition hardware previously described in Section II.2.a. A schematic of the Room 24 test facility data acquisition system is shown in Figure 37. Additions required to the original system are indicated by the dotted lines. A Hewlett Packard (Model 2804A) quartz

Figure 33. Slip Ring Support Assembly

Figure 34. Nose Cone Installation

Figure 35. Bellmouth Tie Rod Installation

Figure 36. Test Article

Figure 37. Schematic of Aero Propulsion Laboratory Test Facility Data Acquisition System

mometer was added to the system to provide additional temperature information use in corrected flow calculations. The quartz probe (Model 18110A) was mounted he positioning strut of the nose cone, as shown in Figure 38.

The output of the probe required amplification by a 1810A line amplifier, to the distance from the test article to the control room where the temperature recorded.

Wall static pressure measurements in addition to those obtained from the e probe were added to monitor test facility flow rates. A bellmouth wall static sure measurement (P4) and a station 2.5 O.D. wall static measurement (P5) were ched to the scanivalve. These measurements were necessary to assist in setting maintaining the required mass flow rates during data acquisition periods.

The pressure transducers used during Phase I of this program were replaced wo Druck model PDCR22 pressure transducers with ranges of 0-1 and 0-5 psid, ectively. This change was necessary due to the lower pressure differentials untered in this test facility as opposed to the engine test. Measurements of e low differentials on the transducers used in the engine test would have romised the uncertainty goals. The lower range transducers provided the ssary component uncertainty to maintain the +1 percent overall system rtainty. Bench calibrations for the new transducers are shown in Table D-1, ndix D. These indicate linear response in the range of pressures measured. sure measurements were connected to the scanivalves as shown in Figure 39.

The scanivalves were replaced by model J-9 scanivalves which provide for r pressure differential measurement capability. Initial testing in Room 24, at r pressure differentials than obtained in the engine test, indicated on-line bration errors. Differences in on-line calibration before and after a urement were noted. The problem was traced to the oil filled type scanivalve g used. The lubricating oil leaked into the pressure sensing channel, resulting lockage of the depressurization port. The low pressure differentials measured unable to keep this port clear, thus resulting in false readings. The model scanivalves were graphite lubricated and thus eliminated the problem.

The traverse actuation system was adjusted after the engine test to acquire er response. Due to this change, it was recalibrated by the same procedures lied in Section II.2. The results of this calibration are shown in Figures D-1 1gh D-4, Appendix D. The new calibration constants were incorporated into the acquisition software.

Figure 38. Quartz Thermometer Installation

Figure 39. Scanivalve Pressure Measurement Schematic

SECTION IV

MODIFIED PRESWIRL VANE AND SCREEN TEST (PHASE I)

ERAL REQUIREMENTS

was previously indicated, a modified preswirl vane and screen design was to more accurately duplicate the total pressure and swirl angle profiles d in Section II.4. The vanes and screens to achieve these measured profiles igned by Pratt & Whitney Aircraft and tested in the CRF/F100 inlet duct test defined in Section III.3. The following subsections describe the preswirl screen design, the test procedures and test results.

SWIRL VANE AND SCREEN DESIGN

better simulate the fan discharge swirl profiles, a new preswirl vane row CRF/F100 was designed by Pratt & Whitney Aircraft, Government Products 1. The new vane design was compatible with existing inlet hardware defined ion III.3. Therefore, there are no changes to the flow path or the number of escribed. The modified preswirl vanes were designed from the total pressure -1 angle profiles measured at the 2.3 location in the F100 S/N P072 engine. suggested by P&WA that these profiles measured at the 2.3 location, which is n of the 8 intermediate case support struts, would provide a better design on than the profiles measured at station 2.5. It was assumed if the station files could be duplicated in the inlet hardware, the station 2.5 profiles Iso be duplicated. During the design process, factors were taken into to compensate for the fact that the engine station 2.5 profiles were 1 in a Series 3 intermediate case, and the CRF/F100 inlet hardware has a ? intermediate case. The difference between these cases is shown in Figure Series 3 case has a slightly more bulged flow path than the Series 2 case. rall program goal was to design preswirl vanes and screens that provide 2.5 (compressor entrance) profiles similar to those measured in the engine; re, the differences in intermediate cases required consideration.

e preswirl vanes were designed to generate a swirl distribution profile from those measured in the engine, as shown in Figure 50 (taken from see 8). Restaggering of the vanes with the sync ring assembly was anticipated eve the profiles at the low and high speed ranges.

'e 48. Original Preswirl Vane Station 2.5 Swirl Distribution (Vane Angle = 33°)

re 47. Original Preswirl Vane Station 2.5 Swirl Distribution (Vane Angle = 30°)

gure 46. Original Preswirl Vane Station 2.5 Swirl Distribution (Vane Angle = 25°)

Figure 45. Original Preswirl Vane Station 2.5 Swirl Distribution (Vane Angle = 20°)

Figure 44. Original Preswirl Vane Station 2.5 Swirl Distribution (Vane Angle = 15°)

Figure 43. Original Preswirl Vane Station 2.5 Swirl Distribution (Vane Angle = 10°)

Figure 42. Original Preswirl Vane Station 2.5 Swirl Distribution (Vane Angle = 5°)

Figure 41. Original Preswirl Vane Station 2.5 Swirl Distribution (Vane Angle = 0°)

- (9) During each data point, the program stored the following on tape:
 - All individual average value points (raw data)
 - Both sets of calibration constants
 - Valves printed out in the short form printout mentioned above

6. RESULTS

The swirl angle profiles measured during this phase of testing are shown in Figures 41 through 48, the tabulated data is shown in Table D-2, Appendix D. Measured swirl profiles for the four selected midspan Mach number flow rates are superimposed with the swirl profiles, measured at the same location (Station 2.5) and respective flow rate, for the F100 engine S/N P072. All vane angle settings from 0 to 33 degrees indicate, as was previously anticipated, inadequate duplication of measured engine profiles.

They also indicate less than a three degree variation in swirl angle over the complete range of flows tested. Therefore, future testing of the modified preswirl vanes was accomplished without varying the flow rates over the complete range of engine operation.

The primary goal of this test phase of checking out the data acquisition process was accomplished, and the system was ready for future modified vane testing with little change.

TABLE 5
TRAVERSE CONTROL SETTINGS

	POSITION	PERCENT SPAN	TRAVERSE LINEAR VOLTS	TRAVERSE DEPTH (IN.)	MEASUREMENT PORT DEPTH (IN.)
	0	6.8	052	0.0	0.25
	1	7.7	134	.034	0.284
	2	15.4	819	0.318	0.568
	3	23.1	-1.505	0.602	0.852
	4	30.8	-2.187	0.885	1.135
	5	38.5	-2.873	1.169	1.419
	6	46.2	-3.558	1.453	1.703
	7	53.8	-4.243	1.737	1.987
	8	61.6	-4.928	2.021	2.271
	9	69.2	-5.614	2.305	2.555
	10	76.9	-6.297	2.588	2.838
	11	84.6	-6.982	2.872	3.122
	12	92.3	-7.667	3.156	3.406
AT SPLITTER	13	100.0	-8.352	3.440	3.69

- (6) Option to either reduce printout and store the data, or return to step 2.
- (7) Short form printout. Reduce data and print out the following in engineering units:
 - Time of day to be obtained from internal clock
 - Date
 - Point number
 - Values for P1-PATM, P1-P2, P1-P3, P2-P3, P4-PATM, P5-PATM in psid
 - T1, Tatm OF, traverse positions in percent span and degree of rotation.
 - TT, PT, PS, Mach Number, swirl angle
 - (8) Plot Data

As the experiment proceeds, the following parameters were plotted as a function of percent span (traverse position)

- Mach number
- Swirl angle

test was position 2.5 midspan Mach number. With this continuous readout of Mach number, the exhauster control valves could be adjusted to obtain the flows matching the engine test.

A statement was added to the software which read the HP 2804A quartz thermometer through an IEEE interface. Provisions were also added to accommodate the measurement, calculation in engineering units, and printout of the bellmouth and station 2.5 wall static pressures for each data point. The output format for the on-line printout was also modified. An example of this printout is shown in Figure D-5, Appendix D.

5. DATA ACQUISITION

After completion of test article installation, data acquisition system changes and check-out, the traverse actuation system was mounted to the inlet hardware at Station 2.5. The alignment procedures followed are described in Section II.2.a.

The test plan was to acquire 12 data points across the span of the intermediate case at the 2.5 position. The spanwise locations and corresponding traverse control voltages are shown in Table 5. Four different midspan Mach number ranges were chosen to correspond to the engine fan speeds of 9,500, 8,500, 6,500 and 4,500 RPM. The corresponding station 2.5 midspan Mach numbers measured were .54, .45, .36 and .28. In addition to the flow rate variations, there were PSV setting variations. The vane angles of attack could be manually varied through a sync ring device described in Section III.3.c. The vanes could be varied over a range of 33 degrees. Eight different PSV settings were tested. The following is a list of steps that the data taking and recording system followed.

- (1) Rotate wedge probe to null position.
- (2) Calibrate transducers and store calibration constants for high/low calibration reference pressure.
- (3) Take average, maximum, minimum, and deviation from 36 data points each of P5-PATM, P4-PATM, P1-P2, P1-P3, P2-P3. Take one data point of T1, Tatm, and traverse (radial and rotational) positions before and after taking the raw data points.
 - (4) Calibrate transducers for high/low pressure again.
- (5) Print the calibration constants measured after the data taking and their respective percentage change from before to after data taking. Also, print out percentage change of traverse positions mean and maximum variation of all raw data.

Figure 40. Data Acquisition Control Center

The order of pressure measurement shown in Table 1 was changed because only two transducers were required and additional wall static measurements were made. The revised order is shown in Table 4.

TABLE 4
PRESSURE SENSING ORDER

Measurement Order	Transdu	cer
	0-1 psid	0-5 psid
1	0 psid	0 psid
2	1 psid	5 psid
3	0 psid	P5 - PATM
4	0 psid	P4 - PATM
5	P2 - P3	P3 - P1
6	Pl - PATM	P2 - P1
7	1 psid	5 psid
8	0 psid	0 psid
9	P2 - P3	0 psid

This scheme provided for a zero point and a full range point calibration of both transducers before and after each data point, as was the case in the previous test. Without this method of data acquisition, the scanivalve problem previously mentioned would have gone undetermined, resulting in erroneous measurements.

An HP 9872B plotter was also added to the data system to allow for plotting of selected measured parameters during the data acquisition process. The data acquisition system was installed in racks in the control room positioned in close proximity to the exhauster control panel, as shown in Figure 40. No other data acquisition hardware changes were required for the test.

b. Software Modifications

To accommodate the additional hardware and measurements added to perform this test, data acquisition computer program changes were required.

The basic data reduction equations remained the same as those defined in Section II.2.b. Provisions were made to calculate and display the mach number, determined from the wedge probe, continuously before each traverse. This was required because the parameter chosen to match the engine profile test and the inlet hardware

Figure 49. Intermediate Case Inner Diameter Flow Path Variations

69

The preswirl vane was designed using the test results defined in Reference 9 for 6 percent thick NACA 63 series guide vanes. A PSV setting of 20 degrees positions the vane leading edge axially. To accomplish the turning required at a minimum loss and maintain a reasonable vane camber distribution, increased cord was required. Details of vane geometry taken from Reference 8 are given in Appendix E. The final vane design is shown in Figure 51.

To simulate engine compressor inlet total pressure profile in the CRF/F100, a screen configuration was also designed by P&WA. The screen loss was defined in order to simulate the high engine speed profile shown in Figure 52. The screen discharge pressure profile was defined considering inlet end-wall boundary layer preswirl vane loss and swirl distribution to obtain the required pressure profile of station 2.5. Further details of this design can be found in Reference 8. The screens defined by this process are shown in Figure 53. The outer portion of the screen from 60 to 100 percent span was a .16 x .16 x .062 mesh, and the inner portion from 29 to 60 percent span was a .20 x .20 x .062 mesh.

3. DATA ACQUISITION SYSTEM

The data acquisition system utilized in this phase of testing is described in Section III.4. As a result of previous test experience, some minor modifications were performed to obtain more information. The changes are detailed in the following sections.

a. Hardware Modifications

During this phase of testing, the modified preswirl vanes described in Section IV.2 were installed in the inlet hardware sync ring assembly, as shown in Figure 54. The vanes were designed such that 20 degrees of actuation was available during testing. All traverse and instrumentation locations remained the same as the previous phase of testing. A station 2.5 engine total pressure rake (Figure 55) was installed in octant three of the intermediate case for use in calculating the station 2.5 corrected mass flow on-line. This was required for future data comparisons. The five compressor rake measurements were plumbed together to obtain an aerodynamic average total pressure at station 2.5. The fan duct portion of the rake was not utilized for this test. Due to the addition of this measurement, the scanivalve was reconfigured (as shown in Figure 56), where P6 is the station 2.5 rake average pressure.

Figure 51. Modified Preswirl Vane

Figure 53. Phase I - Screen Configuration

Figure 54. Modified Preswirl Vane Installation

Figure 55. F100 Engine Total Pressure Probe

Figure 56. Modified Preswirl Vane Test (Phase I) Scanivalve Configuration

ad Paradonie sociological deposition de sociologica de sociologica de sociologica de sociologica de sociologic

b. Software Modifications

The data acquisition software described in Section III.4.2 was modified to ommodate the additional measurement and associated corrected mass flow calculation. station 2.5 corrected mass flow was determined in the following manner.

s Flow

$$\dot{\mathbf{m}} = \rho \mathbf{V} \mathbf{A} \tag{11}$$

For an ideal gas, this relation can be expressed in the following manner

$$\dot{m} = A \cdot PS \cdot \left[\frac{\gamma_{gc}}{R} \cdot \frac{1}{TT} \left(\frac{PT}{PS} \right)^{\gamma - 1/\gamma} \right]^{1/2} \star M$$
 (12)

Mach Number can also be expressed in terms of total and static pressure by the lationship defined in Equation 10. Therefore Equation 12 becomes the following

$$\dot{m} = A \cdot PS \cdot \left[\frac{\gamma_{gc}}{R \cdot TI} \left(\frac{PT}{PS} \right)^{\gamma - 1/\gamma} \right]^{1/2} \star \left\{ \frac{2}{\gamma - 1} \left[\left(\frac{PT}{PS} \right)^{\gamma - 1/\gamma} - 1 \right] \right\}^{1/2}$$
(13)

Rearranging Equation 13 the following relation is obtained

$$\dot{m} = A^* \left(\frac{2 \cdot g_c}{R} \cdot \frac{\gamma}{\gamma - 1}\right)^{1/2} * PS^* \left\{\left(\frac{PT}{PS}\right)^{-\gamma - 1/\gamma} * \left[\left(\frac{PT}{PS}\right)^{\gamma - 1/\gamma} - 1\right] * \frac{1}{TT}\right\}^{1/2}$$
(14)

Using the bellmouth area at station $2.0 \text{ of } 271.8 \text{ in}^2$ and the values of the onstants for air at room temperature the following relation is obtained

$$\dot{m} = 558.5 *PS* \left\{ \left(\frac{PT}{PS} \right)^{1/3.5} * \left[\left(\frac{PT}{PS} \right)^{1/3.5} - 1 \right] \cdot \frac{1}{TT} \right\}^{1/2}$$
 (15)

Equation 15 was used to determine the actual mass flow where

$$PS = PATM - P4 \tag{16}$$

$$PT = PATM (17)$$

:ted Mass Flow

ne mass flow was corrected to station 2.5 conditions by the following relation

$$\dot{m}_{corr} = \left(\dot{m} \cdot \sqrt{\frac{11}{519}}\right) / \left(\frac{P12}{14.7}\right) \tag{19}$$

Rearranging Equation 19, the corrected mass flow can be expressed as the wing

$$\dot{m}_{corr} = \dot{m} (.645) \sqrt{TT/PT2}$$
 (20)

Equation 20 was used to determine the corrected mass flow for the test where

$$PT2 = PATM - P6 \tag{21}$$

These equations were incorporated into the data acquisition software. The wing additional information was added to the on-line printout format:

- (1) Vane angle
- (2) Rake total pressure
- (3) Mass flow
- (4) Corrected mass flow

cample of the output is shown in Figure E-6, Appendix E.

Upon completion of all required changes, the data acquiaition hardware and vare was checked by an end-to-end verification as before. The process required that id-weight tester pressure be applied to the sensing tubing of Pl thru P5, ectively. Each time a pressure was applied, the data acquisition sequence was lated and the resulting pressure printed out was compared with the dead-weight sure setting. In all cases the pressure compared with less than the +1 percent defined by the uncertainty analysis. Therefore, the data acquisition system prepared for the data acquisition phase of this test.

DATA ACQUISITION

The same data acquisition procedures described in Section III.5 were followed. were acquired for preswirl vane angle settings of 0, 5, 10, 15 and 20 degrees nidspan Mach number settings of .54 and .45. A midspan Mach number setting of vas also obtained for vane settings of 10, 15 and 20 degrees. Plots of swirl : and Mach number versus percent span were obtained on-line to aid in data fication. For further data acquisition confidence, selected traverses were ated on different test days. These traverses indicated duplication of results in the prescribed accuracy. Additional traverses were obtained at a different unferential location by removing the traverse from octant eight, placing it into nt one, and re-establishing the required flow rate. The traverse and wedge e was then removed from the station 2.5 location and placed at the 2.3 location otain further information for comparison with design data. This information was ssary because the vanes were designed to produce the 2.3 profiles, as described ection IV.2. Data were obtained at the 2.3 location for vane angles 0, 5, 10, nd 20 degrees and flow rates corresponding to station 2.5 midspan Mach number of and .54. These corrected flow rates were approximately 45 lb/sec and 53 lb/sec, ectively. These flow rate settings were determined as noncritical in affecting l distributions from previous test results. Therefore, they were adjusted to in 1 1b/sec of the desired rate to conserve test time. The station 2.3 and 2.5 obtained during this phase of testing is presented in tabular form in Table Appendix E.

DATA REDUCTION AND ANALYSIS

Further post test data reduction was performed to obtain total pressure profile s at the 2.3 and 2.5 locations. These plots and selected swirl distribution s are presented in Figures E-7 thru E-23, Appendix E. These profiles were ared with the measured engine profiles to determine the adequacy of the screen gn.

An investigation of the swirl distribution provided at station 2.5 indicates the modified preswirl vanes did provide a spanwise swirl distribution which es much more than the one produced by previous existing vanes although they 1 did not match the required engine profiles. Indications are that the swirl ribution varies insignificantly with flow rate; therefore, it was not considered

analysis. Further investigation of the swirl data indicates the overall does not vary for vane angle settings of 0, 5, 10 and 15 degrees; the s appear to only be shifted. Comparison between the profiles obtained at a 15 degree PSV setting indicated a marked change in the overall profile, as n Figure 57. The profile that was obtained for a PSV setting of 20 degrees of the profiles that was duplicated, as previously mentioned, therefore g that this distribution existed. Further investigation of the station 2.3 is for these settings indicate that they approached the required engine shown in Figure 58, but did not achieve it. Streamline analysis performed predict this change in swirl distribution at station 2.5 for a 5 degree on in vane setting. This variation in profile was perceived to be due to sparation on the eight support struts. Separation of flow could explain the firl distribution discussed in Section II.4. The swirl profile measured at 12.5 for a vane setting of 20 degrees agreed more closely to the engine is than any other profile produced thus far.

tation 2.5 total pressure profiles also indicate a considerable change with agle variations from 15 to 20 degrees. A reduction in total pressure results lower 50 percent span and increases in total pressure results at the upper 50 t span. Figure 59 shows this variation, and it also indicates that the 20 s vane angle setting total pressure profile duplicates the engine data for the 50 percent span.

ith these results it was apparent that although the modified preswirl vanes reens did provide profiles with more variation than the original vanes, they t match the measured engine profiles. Specifically, the swirl profiles ad less turning in the midspan region and the total pressure profile required tation at the outer 50 percent span. As indicated in the above results, the profiles became more like the engine swirl profiles when the vanes were ad from 15 to 20 degrees. It was anticipated that further actuation above 20 s may lead to profiles even more like those measured in the engine. The inlet hardware configuration did not allow for actuation above 20 degrees vane 0.D. edges binding on the screen holder rotator ring. A recommendation the for modifications to the vanes and screen holder assembly to allow for 35 of actuation. Also, to provide for corrections for the total pressure ions at the outer 50 percent span, it was recommended that a screen be added

57. Station 2.5 Swirl Profile Comparisons (Modified Preswirl Vanes - Phase I)

B. Station 2.3 Swirl Profile Comparisons (Modified Preswirl Vanes - Phase I)

COMPRESSOR RESEARCH FACILITY F100 HIGH PRESSURE COMPRESSOR INLET TOTAL PR. (U) AIR FORCE WRIGHT AERONAUTICAL LABS WRIGHT-PATTERSON AFB OH W M COPENHAVER OCT 84 AFWAL-TR-84-2030 F/G ÁD-A157 108 2/3 -F/G 21/5 NL UNCLASSIFIED

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

COCCOUNT ASSESSMENT TONOUND TONOUNCE TONOUND TO

Figure 59. Station 2.5 Total Pressure Comparisons (Modified Preswirl Vanes - Phase I)

AFWAL-TR-84-2030

to the existing screen, thereby, reducing the total pressure at the area entering the preswirl vanes. It was anticipated that this would reduce the total pressure at the outer 50 percent span at station 2.5. With these recommendations, an additional phase of testing was undertaken to attempt to obtain improved profiles.

SECTION V

MODIFIED PRESWIRL VANE AND SCREEN TEST (PHASE II)

1. GENERAL REQUIREMENTS

In an attempt to better simulate the measured PO72 engine profiles described in Section II.4, an additional test was undertaken. This test incorporated the recommendations for inlet hardware improvements (Section IV.5) to determine if their conclusion would result in improved results. Additionally, test procedures were modified to allow for improvements deemed necessary from previous test experience. The following subsections describe the modifications made to the inlet hardware and to the overall test procedures. They also detail results obtained from this phase of testing.

2. PRESWIRL VANE AND SCREEN MODIFICATIONS

As was recommended in the previous section, the preswirl vanes were modified by P&WA to allow for increased actuation. This was accomplished through two procedures. First, the O.D. vane edges were ground to eliminate binding when they are actuated above 20 degrees. Second, the rotating screen holder assembly described in Section III.3.c was replaced by a stationary holder shown in Figure 60. The clearance required for the bearings on the rotating holder was allowing the ring assemb' to drop down on the vanes positioned at the top of the test article resulting in additional binding. After completion of these two modifications, 35 degrees of vane actuation was available.

The inlet screen profile was modified by the addition of a screen (designed by P&WA) to the existing configuration, as shown in Figure 61. The additional screen was a $.25 \times .25 \times .062$ mesh between 50 and 90 percent span. This screen combination was defined in the data as Screens=3.

3. DATA ACQUISITION SYSTEM

The data acquisition system used during this phase of testing was modified from the previous tests to provide additional information and reduce test time. As was determined during the previous test, station 2.3 information was required to

Figure 60. Stationary Screen Holder

Figure 61. Phase II - Screen Configuration

ADDITIONAL SCREEN

determine a complete evaluation of design changes. Provisions were made to obtain data at station 2.3 and station 2.5 simultaneously and thereby reduce test time significantly. In addition, after discussion with P&WA, it was determined that information was required about the flow, swirl angle and total pressure, behind the compressor inlet guide vanes. These conditions are the compressor inlet conditions. Provisions were made to obtain this data. The changes required to the hardware and software to incorporate these additional requirements are detailed in the following paragraphs.

a. Hardware Modifications

The primary data acquisition hardware change required was to accommodate an additional traverse and wedge probe at station 2.3. This addition was made to reduce test time by obtaining both station 2.3 and station 2.5 information simultaneously. The addition of a traverse and wedge probe resulted in five additional measurements; three pressures from the station 2.3 wedge probe (probe B) and two traverse potentiometer signals from the additional traverse. To accommodate these measurements, the scanivalve was altered to the configuration defined in Figure 62. Wedge probe A is the station 2.5 probe.

In addition to this change, an alternate method for determining vane angle setting was required as the original indicator could not be attached to the new stationary screen holder. The modified vane position indicator was attached directly to a vane stem with a fixed pointer, as shown in Figure 63. All other data acquisition hardware remained the same as described in Section IV.3.a.

b. Software Modifications

Due to the additional measurements required from station 2.3, the data acquisition computer program was modified. Changes were made in the program to direct the scanivalve to the 14 different ports and acquire the data from the additional wedge probe. All data reduction procedures defined in Section II.2.b were followed for the station 2.3 probe. The Mach number at station 2.3 was determined as defined in Section IV.3.b. The on-line data output prints and plots were modified to provide for the additional information (example is shown in Figure F-1, Appendix F). Plotting was modified to produce the swirl profiles measured on a background of the engine design flow (54 lb/sec) swirl profile. This plotting

MANAGEMENT AND A STATE OF THE S

JTAL	TATIC	STATIC	TOTAL	TATIC	STATIC		STATIC	
Ĕ	က်	က်	-	က်	S		띯	ر
4	4	4		Φ	6	STAT	CAS	OTA
PROBE	PROBE	PROBE	PROBE	PROBE	PROBE	S HTO	DIATE	AKE T
WEDGE	WEDGE	WEDGE	WEDGE	WEDGE	WEDGE	BELLMO	INTERME	2.5 R
Ħ	11	11	11	•1	#1	16	Ħ	11
PIA	P2A	P3A	PIB	P2B	P3B	P4	P.	P6

Modified Preswirl Vane Test(Phase II) Scanivalve Configuration Figure 62.

Figure 63. Modified Vane Position Indicator

option was added to allow for more direct comparison of the achievements of the preswirl vanes. The provision was also made in the program to produce total pressure profiles measured on the engine profile background after each traverse was completed. A listing of this modified program is shown in Appendix F.

4. DATA ACQUISITION

The goal of this test was to determine if the recommended modifications made in the screens and vanes would provide profiles that match profiles measured in F100(3) S/N P072 engine. The test plan was defined to obtain this information. The complete test plan for this phase of testing is shown in Appendix F. Before testing began, an end-to-end calibration of the data acquisition system was completed. This calibration indicated the desired data accuracy of +1 percent was achieved.

All traverses were obtained for a corrected mass flow of approximately 54 lb/sec or maximum exhauster capabilities. Some hardware configurations resulted in slightly reduced flow rates from the exhausters defined in Section III.2. This did not present a problem since previous test results indicated no appreciable change in profiles exists with a 2 lb/sec flow rate variation. Data were obtained at preswirl vane settings of 0, 10 and 15 degrees with the screen set defined in Section IV.2 without the additional screen for comparison with the results of the previous phase of this test. This data will indicate the profile variations due to PSV and screen holder changes defined in Section V.2 and the reinstallation of the hardware in the test facility.

5. DATA ANALYSIS

a. Swirl Angle Profiles

Tabular data obtained during this phase of testing is shown in Table F-1, Appendix F. As previously stated, one of the goals of this test was to determine the effects on the profiles of hardware modifications and reinstallation in the test facility.

The modifications made to the hardware described in Section V.2 should have had minimal effect on the profiles for vane angle settings of 0 to 20 degrees. Swirl data obtained in this phase of testing compared with that obtained under the same conditions (Section V.5) is shown in Figures 64 thru 67. Figure 64 indicates a

SWIRL ANGLE

Figure 64. Re Installation Effects on Swirl Profiles, PSV = 0°

STA. 2. 3 VANE ANGLE=10

STA. 2. 3 RE-INSTALL

Figure 65a. Re Installation Effects on Swirl Profiles at Station 2.3, PSV = 10°

STA. 2. 5 VANE ANGLE=10

STA. 2. 5 RE-INSTALL

Figure 65b. Re Installation Effects of Swirl Profiles at Station 2.5, PSV = 10°

SWIRL ANGLE

STA. 2. 3 VANE ANGLE=15

STA. 2. 3 RE-INSTALL

gure 66a. Re Installation Effects on Swirl Profiles at Station 2.3, PSV = 15°

TOTAL PRESSURE

_____STA. 2. 5

VANE ANGLE=20

STA. 2. 5 RE-INSTALL

ure 91. Re Installation Effects on Station 2.5 Total Pressure Profiles, PSV = 20°

TOTAL PRESSURE

STA. 2. 5 VANE ANGLE=15

STA. 2. 5 RE-INSTALL

gure 90. Re Installation Effects on Station 2.5 Total Pressure Profiles, PSV = 15°

TOTAL PRESSURE

Figure 89. Re Installation Effects on Station 2.5 Total Pressure Profiles, $PSV = 10^{\circ}$

Figure 87. Travese Location Behind Inlet Guide Vanes

Figure 88. Swirl Profiles Behind Inlet Guide Vanes (Phase II), PSV = 15° and 29° 104

gure 84. Swirl Profiles (Phase II), PSV = 29⁰, Station 2.5, Octant 6

Figure 85. Swirl Profiles (Phase II),
PSV = 29°, Station 2.5, Octant 7

gure 86. Swirl Profiles (Phase II), PSV = 29⁰, Station 2.5, Octant 8

Figure 81 and Figure 86 indicates that duplication was achieved and, therefore, assures that the measured circumferential variations were not due to traverse repositioning. These variations are primarily due to the intermediate case support struts creating 8 individual flow passages in the intermediate case. Each passage has its own characteristic since there are small variations in each due to strut variations.

Engine circumferential variations were not measured in the test described in Section II due to test article configuration and time limitations. Therefore, these results indicate additional uncertainty (in duplication of the engine conditions) may exist due to the circumferential variation of the swirl profiles. The results also showed that further investigation behind the IGV was required to determine if the profiles measured at station 2.5 will propogate to the inlet of the fourth stage rotor. A traverse was taken at the location shown in Figure 87. Results of the measurements taken behind the IGV's are shown in Figure 88. It indicates that the swirl distribution present at station 2.5 is substantially modified after transition thru the inlet guide vanes. The spanwise variation in swirl angle is eliminated and increased turning is added to the flow. It also indicated that the swirl distribution behind the IGV's is insensitive to PSV changes.

b. Total Pressure Profiles

As described in the previous section, data were obtained for the inlet hardware configuration of Section IV to determine removal, reinstallation and modification effects. Figure 89 indicates that good agreement in total pressure profile exists between installations at low vane angle settings, as was the case for the swirl profiles. Figures 90 and 91 show the increasing sensitivity to hardware installation changes with increases in vane angle settings. This variation also indicates the total pressure profile at station 2.5 is sensitive to swirl changes, as swirl profiles varied between installations for PSV angles above 15 degrees. It was apparent from these comparisons that when the final screen configuration is determined and full documentation obtained, care should be taken in assuring accurate screen positioning for the CRF F100 test. No further comparisons were made between installations with the knowledge of this sensitivity. Additional profiles for vane angle settings of 25, 27, 30 and 35 are shown in Figures 92 thru 95. These indicate the total pressure profile is sensitive to vane angle settings up to 25 degrees. Above that, little variation is noted in total pressure profile.

Figure 80. Swirl Profiles (Phase II), $PSV = 28^{\circ}$

Figure 81. Swirl Profiles (Phase II), PSV = 290

Figure 82. Swirl Profiles (Phase II), PSV = 29⁰, Station 2.5, Octant 1

Figure 83. Swirl Profiles (Phase II), PSV = 29°, Station 2.5, Octant 2

Figure 76. Swirl Profiles (Phase II), $PSV = 25^{\circ}$

_ _ 2.5 POS. GMS. PETZ) MBM 2.5- 8.54
,____ 2.9 POS. COW F1880 PT. 0- 1880- 1847
,____ 2.5 POS. COW F1880 SCHEMO- 3

Figure 78. Swirl Profiles (Phase II), $PSV = 35^{\circ}$

Figure 77. Swirl Profiles (Phase II), $PSV = 30^{\circ}$

Figure 79. Swirl Profiles (Phase II), $PSV = 27^{\circ}$

Figure 72. Swirl Profiles (Phase II), $PSV = 0^{\circ}$

Figure 74. Swirl Profiles (Phase II), PSV = 150

Figure 73. Swirl Profiles (Phase II), $PSV = 10^{0}$

Figure 75. Swirl Profiles (Phase II), $PSV = 20^{\circ}$

testing results. Swirl angle profiles measured for vane angles of 0, 10, 15, 20, 25, 30 and 35 degrees are shown in Figures 72 thru 78, respectively. Figure 72 (PSV=0) indicates that swirl profiles at station 2.5, with screen set three, can simulate the measured engine profiles without the profiles at station 2.3 matching. This figure shows that the profile measured at station 2.5 has, with additional flow turning, the same relative shape as the 2.3 profile. This demonstrates that the eight support struts in the intermediate case impose little effect in altering the profile shape for low PSV settings. As air angles of attack on the struts increase by increasing the PSV turning, they become more critical in affecting the swirl profiles measured. This was apparent for vane settings above 15 degrees, as shown in Figures 74 thru 78. The profiles measured at the 2.5 location vary considerably. They also confirm that profiles obtained for PSV settings above 30 degrees result in poorer matches of engine profiles. From Figures 76 (PSV=250) and 77 (PSV=300), it is apparent that the profile undergoes a change into a configuration more characteristic of those measured in the engine. Also, the measured 2.3 profile for a PSV setting of 30 degrees duplicates the engine profiles within 5 degrees and has the same general shape. Due to the closeness of these profiles, traverses at additional settings of 27, 28 and 29 degrees were obtained to determine the optimum vane angle setting. These traverses are shown in Figures 79 thru 81. These figures demonstrate the progression of the station 2.5 swirl profile into one similar to the engine profile at the vane angle setting of 29 degrees. The swirl angle profiles measured with the vane angles set at 29 degrees represent the swirl profiles measured on the engine more accurately than all previous profiles measured. Therefore, this vane setting was selected for use during testing to determine circumferential variation in swirl distribution at station 2.5. The traverse at station 2.3 was used to assure conditions remained equal between station 2.5 traverse movements. Profiles were measured in octants one, two, six and seven, in addition to the previous measurements made at octant eight. Figure 82 thru 85 detail these additional profiles. These figures indicate that while maintaining constant 2.3 profiles and, therefore, consistent flow conditions, there is a substantial circumferential variation in swirl distribution at station 2.5. The swirl circumferential distribution indicates a maximum variation of 7 degrees at the 84 percent span location. The average of the maximum variations for all spanwise locations was four degrees. To assure that the movement of the station 2.5 traverse could not have caused these variations, the traverse actuator was installed back to the original octant eight position and the traverse duplicated. Comparison between

Figure 68. Phase I - Screen Configuration Figure 69. Phase I - Screen Configuration Swirl Profiles (PSV = 25°) Swirl Profiles (PSV = 27°)

Figure 70. Phase I - Screen Configuration Figure 71. Phase I - Screen Configuration Swirl Profiles (PSV = 30°) Swirl Profiles (PSV = 35°)

maximum variation of 6 degrees at the 92 percent span position between the station 2.3 profiles for a vane angle setting of 0 degrees. The reduced flow turning at the tip seen in this test is due to the increase in tip clearance of the vanes to reduce binding at the higher angles. The profiles indicate excellent comparison at all other spanwise locations. Figure 64 also indicates at station 2.5 a variation in profile between 0 and 3 degrees at almost all spanwise locations. Figure 65b. although, indicated less than a 1 degree swirl variation between test phases at this station for a 10 degree PSV setting. Also, the station 2.3 swirl profiles at a 10 degree PSV setting (Figure 65a) are again in good agreement. Figures 66a and 66b show the swirl angle variations between phases for a 15 degree PSV setting. They demonstrate swirl agreement within 1 degree of both station 2.3 and 2.5 profiles between test phases. The final comparison condition available is that one of the 20 degree PSV setting, as shown in Figure 67. Although at some spanwise locations differences of three degrees exist, both stations were duplicated within two degrees agreement at the majority of spanwise locations. From the four cases shown, it can be assumed that variations in swirl angle profiles (due to inlet hardware removal and changes) between test phases contributed to approximately a 2 degree uncertainty in profile duplication.

Additional swirl angle profile information, with the original screens described in Section IV.2, was obtained for vane settings of 25, 27, 30 and 35 degrees to determine the effects of the increased vane actuation capability on the swirl profiles. The results of these traverses are shown in Figures 68 thru 71. Review of these data indicates that good agreement was obtained between the PO72 engine station 2.3 swirl profiles and the inlet hardware profiles for a vane angle setting of 27 or 30 degrees. The data also indicates that the station 2.5 swirl profile for a vane angle setting of 30 degrees matches the engine profiles at approximately 0 to 40 percent span and from 80 to 100 percent span. The profiles between 40 and 80 percent span still require reduced turning to match the engine profiles. Figure 71 indicates that increased vane actuation to 35 degrees resulted in a degradation of the station 2.5 swirl profile obtained at 30 degrees. Therefore, no further vane actuation data were recorded.

Data were obtained for the complete range of vane angle settings with the additional profile screen defined in Section V.2. This additional screen was recommended, as was the increase in vane actuation, after review of the Phase I

SWIRL ANGLE

STA. 2. 5

VANE ANGLE=20

STA. 2. 3

STA. 2. 5 RE-INSTALL

STA. 2. 3 RE-INSTALL

Figure 67. Re Installation Effects on Swirl Profiles, PSV = 20°

STA. 2.5 VANE ANGLE=15

STA. 2.5 RE-INSTALL

Figure 66b. Re Installation Effects on Swirl Profiles at Station 2.5, PSV = 15

Figure 92. Phase I - Screen Configuration Total Pressure Profile (PSV = 25°)

Figure 93. Phase I - Screen Configuration Total Pressure Profile (PSV = 27°)

Figure 94. Phase I - Screen Configuration Figure 95. Phase I - Screen Configuration Total Pressure Profile (PSV = 30°) Total Pressure Profile (PSV = 35°)

The total pressure profiles obtained for the screen configuration defined in Section V.2 for vane angles from 0 to 35 degrees are shown in Figures 96 thru 105. As was the case with the swirl profiles, little profile variation is noted for vane angle settings above 25 degrees. Figure 98 and 100 demonstrate that good agreement can be reached between measured engine and inlet hardware profiles for vane angle settings of 15 or 25 degrees. The engine spanwise gradient in total pressure was 15 percent. The 25 degree setting provided a maximum of 6 percent and average of 2.3 percent deviation from the desired profiles, although an increase in total pressure from 70 to 100 percent span is required to match engine profiles for these and all other vane settings. As was the case with the swirl angle profiles, circumferential variation in station 2.5 total pressure was determined, as shown in Figures 106 thru 110 for octants one, two, six, seven and eight, respectively. Data taken in octant eight was compared with the previous data taken in that octant for the same conditions to determine total pressure profile repeatability. Comparison of these profiles shown in Figure 111, indicate repeatability within the prescribed accuracy of +1 percent. From Figures 106 thru 110, it can be seen that circumferential variations in total pressure at station 2.5 do exist, as was the case of swirl distribution. Further measurements downstream of the IGV (shown in Figure 112) when compared with the station 2.5 profile (shown in Figure 113) indicate that a nonuniform total pressure profile does exist downstream of the IGV's and that this profile takes on the same general gradien, as those generated at station 2.5.

c. Discussion

Although the modification to the preswirl vanes did produce a more representative swirl distribution, the engine measured swirl profile was not matched. Measurements of the swirl distribution downstream of the IGV's indicate substantial spanwise swirl variation reduction. With this IGV spanwise flow straightening effect, the measured swirl distribution at station 2.5 is adequate for the CRF/F100 rig test as long as the total pressure profile at station 2.5 between engine and rig is matched. Measurements during this phase of testing indicated the total pressure profile present at station 2.5 is not substantially changed by the IGV's. Therefore, it is extremely important that the profile measured from the engine described in Section II is matched in the rig. The screen set number three, as described in this phase, required modification in the area between 70 and 100 percent span to increase the total pressure at that location. An additional phase of testing was required with the screen modification to achieve the F100 engine total pressure profile at station 2.5.

Figure 96. Total Pressure Profile (Phase II), PSV = 0° , Station 2.5

Figure 98. Total Pressure Profile (Phase II), PSV = 150, Station 2.5

Figure 97. Total Pressure Profile (Phase II), PSV = 10⁰, Station 2.5

Figure 99. Total Pressure Profile (Phase II), PSV = 200, Station 2.5

Figure 100. Total Pressure Profile (Phase II), PSV = 25° , Station 2.5

Figure 102. Total Pressure Profile (Phase II), PSV = 28°, Station 2.5

Figure 101. Total Pressure Profile (Phase II), PSV = 27°, Station 2.5

Figure 103. Total Pressure Profile (Phase II), PSV = 29°, Station 2.5

Figure 104. Total Pressure Profile (Phase II), PSV = 30°, Station 2.5

Figure 106. Total Pressure Profile (Phase II), PSV = 29°, Station 2.5, Octant 1

Figure 105. Total Pressure Profile (Phase II), PSV = 35°, Station 2.5

Figure 107. Total Pressure Profile (Phase II), PSV = 29°, Station 2.5, Octant 2

Figure 108. Total Pressure Profile Figure (Phase II), PSV = 29°, Station 2.5, Octant 6

Figure 109. Total Pressure Profile (Phase II), PSV = 290, Station 2.5, Octant 7

Figure 110. Total Pressure Profile (Phase II), PSV = 29°, Station 2.5, Octant 8

REPEATIBILITY

Figure 111. Octant 8, Total Pressure Repeatibility, $PSV = 29^{\circ}$

Figure 112. Total Pressure Profile Behind IGV (Phase II), PSV = 15°

Figure 113. Total Pressure Profile (Phase II), PSV = 15°, Station 2.5

SECTION VI

MODIFIED PRESWIRL VANE AND SCREEN TEST (PHASE III)

1. GENERAL REQUIREMENTS

A final modification was required on the screen set provided by P&WA to increase the total pressure in the region of 70 percent to 100 percent span at station 2.5. In addition, circumferential variation of the swirl profiles and total pressure profiles behind the IGV's will be determined. After the desired station 2.5 total pressure profile was obtained, full documentation of the entrance profiles in the inlet hardware was made for future comparison during CRF testing. The following subsections describe this final phase of testing.

2. PRESWIRL VANE AND SCREEN MODIFICATIONS

No modifications were made to the preswirl vane configuration as swirl profiles obtained in the previous phase of testing were adequate. To increase the total pressure in the 70 percent to 100 percent span region, the outer portion of the screen set 3 was removed, as shown in Figure 114.

HARDWARE MODIFICATIONS

An additional traverse location behind the IGV's was added at octant two, as shown in Figure 115. This provided additional information to determine the circumferential total pressure and swirl variation at the entrance to the compressor. The filter house was not available for this phase of testing and, therefore, was not utilized.

4. DATA ACQUISITION (TESTING)

The test plan from the previous phase of testing was followed. Before testing began, an end-to-end calibration of the data acquisition system was completed. The results of this check (shown in Figures G-1 thru G-10, Appendix G) indicated that the desired accuracy of ± 1 percent was achieved. During the data acquisition process, it was noted that fluctuations in P2-P3 measured by the wedge probe were much greater than previously encountered. The fluctuations were presumed due to the absence of the filter house. In previous tests the filter house not only minimized particles in the flow, but also acted as a flow smoothing and straightening device. The testing

PORTION REMOVED

Figure 114. Screens with Outer Portion Removed

Figure 115. IGV Traverse Location, Octant 7

ontinued without the filter house because this configuration was more similar to he conditions that exist in the CRF. Data were obtained for vane angle settings of , 10, 15, 20, 25, 30 and 35. After reviewing these data, intermediate angles of 22 and 23 were obtained. Data were also obtained for the optimum vane angle setting in ctants one, two, seven and eight at station 2.5 and octants two and seven at the ocation behind the IGV. The vane angle was varied and additional IGV data were aken to determine profile sensitivity behind the IGV to preswirl vane changes. A total of 21 traverses were obtained during this phase of testing. All data obtained are presented in tabular form in Table G-1, Appendix G.

DATA ANALYSIS

a. Swirl Angle Profiles

Profile data at stations 2.3 and 2.5, with screen set 4, for preswirl vane angles of 0, 10, 15, 20, 25, 30 and 35 are shown in Figures 116 thru 122. These data indicate that while profiles at station 2.3 vary substantially as vane settings are changed, station 2.5 swirl has small variations. The station 2.5 swirl profiles most represent the engine profiles for vane angle settings of 20 to 30 degrees, as shown in Figures 119 thru 121. The station 2.3 profile shown in Figure 121 for the vane angle setting of 30 degrees matches the engine profile within 2 degrees between 50 and 100 percent span and 3 degrees for 0 thru 60 percent span. Therefore, vane settings between 20 and 30 degrees are acceptable for the CRF/F100 rig testing. Since the total pressure profile at station 2.5 is affected by preswirl vane setting, the final setting was determined when the desired total pressure profile was obtained. Intermediate preswirl vane angle settings of 22 and 23 degrees (shown in Figures 123 and 124) were obtained after review of the total pressure profiles for preswirl vane angles of 20, 25 and 35. Both plots indicate an average agreement of three degrees with the desired station 2.5 profile. This is the best agreement thus far in the test program. Documentation of circumferential variation of station 2.5 swirl profiles are shown in Figures 125 thru 130. The profiles were obtained for octants one, two, three, six, seven, and eight, respectively. The traverse at station 2.3 was not physically moved from its location on the case during these traverses. Therefore, the station 2.3 profiles are nearly identical in all figures. This indicates that the flow conditions were duplicated upstream of station 2.5 for all traverses. These figures again represent a variation circumferentially in swirl profile at station 2.5 as was found in the previous phase of testing. Measurements were obtained at two circumferentially locations at a station downstream of the inlet guide vane to

2, 3 POS. (ENG. P972) 2.5 POS. (ENG. P872) 2.3 POS. (CRF F188) __ 2,5 POS, CORF F1880

VANE ANGLE- 25 PT. 📂 1882- 1813 SCREENS- 4

2.3 POS. (ENG. P872)

2.3 POS. (CRF F1880)

_ 2.5 POS. (CRF F1880)

PT. 🗲 1818- 1827

e 120.

Swirl Profiles (Phase III), Figure 121. Swirl Profiles (Phase III), $PSV = 25^{\circ}$
PSV = 30°

2,3 POS. (ENG. P872)

2.3 POS. CORF F1880 ___ 2,5 POS. CORF F166D

: 122. Swirl Profiles (Phase III), PSV = 35⁰

Figure 123. Swirl Profiles (Phase III), PSV = 220

SECTION VII

DISCUSSION

objectives of this program were to determine the fan discharge total pressure I angle profiles from an operational F100(3) engine. Then define a configurate would provide these profiles at the inlet of the CRF/F100 compressor rig. rimental measurements and verifications were undertaken by the Air Force OTX) and the analytical design and hardware development was performed by d Whitney Aircraft, Government Products Division. This report primarily ed the efforts of POTX in obtaining the engine profiles and verifying the compressor rig inlet preswirl vanes and inlet screen design. Information given on the method used by Pratt and Whitney Aircraft in designing these vanes and screens to provide the measured engine profiles.

lata acquisition system was defined and transported to Pratt and Whitney; to measure the engine profiles. This system was modified for installation lir Force test facility. Additional data acquisition system hardware and software modifications were made as requirements in the verification increased. The test facility in which all inlet preswirl vane and screen rations were tested was defined. This facility provided for flow capacity trol over the complete range of F100 engine core compressor operation.

of the F100(3) engine (SN P072) for core speeds of 9,700, 10,430, 11,550 780 RPM. The design speed data at 12,780 RPM indicated a swirl angle on of 13 degrees from hub-to-tip at station 2.5. The data obtained from the ther speeds at this location indicated a swirl variation with engine speed of legrees maximum over the complete span. This indicates swirl profiles at 2.5 are not substantially affected by core flow rates. This was also proven equent CRF/F100 inlet tests. The swirl profile measured at station 2.3 for RPM and 9,700 RPM were utilized by Pratt and Whitney Aircraft in designing /F100 preswirl vanes. The total pressure profiles measured at station 2.5 in ine at design speed indicate a maximum of 15 percent gradient of total after the CRF/F100 inlet. Total pressure profiles measured at station 2.3 and design parameters for the CRF/F100 inlet configuration specification.

STATION IGV VANE ANGLE= 23 MSMF- 8.71

150. Total Pressure Profile IGV (Phase III), PSV = 23⁰, 2

FNS= 4

STATION IGV VANE ANGLE= 15 NSMF- 8.67

152. Total Pressure Behind IGV se III), PSV = 23° , Octant 7

Figure 151. Total Pressure Profile Behind IGV (Phase III), PSV = 15⁰, Octant 2

PT. #= 1783- 1794 SCREEMS= #

VANE ANGLE 23 MSMF BL 74

Figure 153. Total Pressure Behind IGV (Phase III), PSV = 150, Octant 7

ate the circumferential variation of the station 2.5 total pressure profile for ts one, two, three, six, seven and eight. The maximum circumferential variation percent and the average variation is 3 percent. The circumferential variation tal pressure is maximum in the hub region and the tip region. This circumferential iformity is due to the effect of the eight support stuts generating individual passages. Each flow passage has its own characteristics and, therefore, total ure profile. Measurements were made downstream of the IGV's to determine the t of this flow nonuniformity after transition through the inlet quide vanes. profiles were measured in two different circumferential locations for vane angle ngs of 15 and 23 degrees. Figures 150 and 151 show total pressure profiles ared at station IGV in octant two for vane angles of 15 and 23 degrees. These es indicate that the total pressure profile downstream of the IGV is affected me preswirl vane settings. The profile measured for vane angle setting of 23 compared with the profile measured at station 2.5 octant two (Figure 145) shows the overall profile is transmitted through the IGV. Some reduction in the spanwise ition can be seen. The profiles were measured for the same vane angles in octant 1, as shown in Figures 152 and 153. Comparison of these profiles and the profiles ared in octant two indicated an average circumferential variation of three percent j degree PSV setting and 1.5 percent for 23 degree PSV setting.

Discussion and conclusions with regard to this final phase of testing will overed in Sections VII and VIII.

Figure 148. Total Pressure Profile (Phase III), PSV = 23⁰, Station 2.5, Octant 7

Figure 149. Total Pressure Profile (Phase III), PSV = 23°, Station 2.5, Octant 8

re 144. Total Pressure Profile se III), PSV = 23° , Station 2.5, ant 1

re 146. Total Pressure Profile se III), PSV = 23°, Station 2.5, ant 3

Figure 145. Total Pressure Profile (Phase III), PSV = 23°, Station 2.5, Octant 2

Figure 147. Total Pressure Profile (Phase III), PSV = 23°, Station 2.5, Octant 6

Figure 143. Total Pressure Profile (Phase III), PSV = 23°

Figure 142. Total Pressure Profile (Phase III), PSV = 220

Figure 139. Total Pressure Profile (Phase III), PSV = 25⁰

Figure 140. Total Pressure Profile (Phase III), PSV = 30°

Figure 141. Total Pressure Profile (Phase III), PSV = 350

Figure 135. Total Pressure Profile (Phase III), $PSV = 0^{\circ}$

Figure 137. Total Pressure Profile (Phase III), PSV = 15°

Figure 136. Total Pressure Profile (Phase III), PSV = 10⁰

Figure 138. Total Pressure Profile (Phase III), PSV = 200

Figure 131. Swirl Profile Behind IGV (Phase III), PSV = 150, Octant 7

Figure 133. Swirl Profile Behind IGV (Phase III), PSV = 150, Octant 2

IGV POR. CONF F1880

Figure 132. Swirl Profile Behind IGV (Phase III), PSV = 230, Octant 7

Figure 134. Swirl Profile Behind IGV (Phase III), PSV = 230, Octant 2

determine the effects the inlet guide vanes had on the flow. Data were obtained for vane angle settings of 15 and 23 degrees in octants two and seven at this location. The traverse of station 2.5 was not moved circumferentially and used primarily for assurance of no flow variation between movements of the IGV traverse. Figures 131 and 132 show swirl distribution behind the IGV at octant seven for vane angle settings of 15 and 23. They indicate that the swirl distribution behind the IGV's is not affected by variation in preswirl vane setting within the +1 degree measurement accuracy. They also indicate that for both PSV settings a maximum variation of 2 degrees exists from hub-to-tip, while at stations 2.5 a 10 degree variation exists. These figures demonstrate the insensitivity of swirl profile behind the IGV's at octant two are shown in Figures 133 and 134. They indicate a shift of approximately 2 degrees from octant seven. This was due to a traverse to case alignment shift. The bosses behind the IGV did not have any convenient method of alignment with the axis of the inlet hardware. Therefore, it cannot be stated that this two degree shift is due to circumferential variation. Therefore, Figures 133 and 134 indicate no circumferential variation of the swirl profile downstream of the IGV within the accuracy of the measurement.

In summary, the measurements downstream of the IGV's indicate that the variation in distribution, radial and circumferential, at station 2.5, does not result in a variation of the profiles generated by the IGV's within the accuracy of the measurements.

b. Total Pressure Profiles

The total pressure data obtained for the inlet screen configuration described in Section VI.2 are shown in Figures 135 thru 141 for vane angles 0, 10, 15, 20, 25, 30 and 35 degrees. All profiles indicate an increase in total pressure between 70 and 100 percent span and a decrease from 0 to 20 percent from the previous screen configuration defined in Section V.2, as was desired. These figures also indicate the sensitivity of the total pressure profile at station 2.5, to a preswirl vane angle variation. The total pressure profile created for a vane angle setting of 25 degrees most closely approximated the desired engine profile. Therefore, a more detailed investigation was performed around this PSV setting. Figures 142 and 143 show the total pressure profiles for 22 and 23 degree PSV setting. The profile measured for a PSV setting of 23 degrees indicated a maximum variation from the desired profile of 3 percent and an average variation of 1.5 percent. No previously measured profiles agree with the desired profiles this accurately. Figures 144 thru 149

Figure 129. Swirl Profiles (Phase III), PSV = 23°, Station 2.5, Octant 7

______ 2.3 FOR, CDK, PE72) VANE ANGLE= 23
_____ 2.5 FOR, CDK, PE72) CHD0T=54, 8
_____ 2.3 FOR, CDF F1800 FT. 6= 1755- 1766
_____ 2.5 FOR, CDF F1800 SCREDNS= 4

Figure 130. Swirl Profiles (Phase III), PSV = 23°, Station 2.5, Octant 8

Figure 125. Swirl Profiles (Phase III), PSV = 230, Station 2.5, Octant 1

Figure 127. Swirl Profiles (Phase III), PSV = 23° , Station 2.5, Octant 3

Figure 126. Swirl Profiles (Phase III), PSV = 23^o, Station 2.5, Octant 2

Figure 128. Swirl Profiles (Phase III), PSV = 23⁰, Station 2.5, Octant 6

Figure 124. Swirl Profiles (Phase III), PSV = 23°

The design process involved a streamline analysis of a particular preswirl vane geometry with an inlet total pressure profile. The vane geometry and inlet total pressure profiles were iterated until the desired station 2.3 profiles were obtained. It was assumed that if the engine station 2.3 profiles were generated in the compressor rig, then the profiles measured at station 2.5 would also match the engine profiles. This assumption will be discussed in reference to the inlet hardware data obtained, later in this discussion.

The data acquisition system was improved and installed in the Air Force test facility as described. This facility provided for the necessary flow rates in the rig inlet hardware comparable to the engine flow rates. Data were obtained for an existing set of preswirl vanes utilized in previous F100 tests. This test was undertaken primarily to determine if the data acquisition system and method were adequate for future testing. A secondary desire was to determine the swirl distribution at station 2.5 provided by these vanes. Data were obtained for preswirl vane settings of 0 to 33. For vane angle settings from 0 to 25 at design flow conditions, a maximum of 3 degrees spanwise variation from 20 degrees was obtained at station 2.5. For vane angle settings of 25 to 33, a 6 degree spanwise variation was measured. As stated previously, engine profiles indicate a 13 degree spanwise variation in swirl angle at station 2.5. This data indicated what was already assumed, that the existing preswirl vane design would not provide the desired swirl profiles. The design of new preswirl vanes had begun before this test. The data also indicated that flow rate has little effect on swirl distribution at station 2.5, as was the case in the engine tests. This information was utilized in future tests to reduce test time. The test itself did verify that the data acquisition system and procedures would be acceptable for future testing with minor modifications.

The preswirl vanes and screens defined by the Pratt and Whitney Aircraft streamline analysis program were provided for installation in the CRF/F100 rig hardware set up in the Air Force test facility. These vanes were 6 percent thick NACA series 63 blading with increasing cord and turning from hub-to-tip. Total pressure, static pressure and swirl angle traverses were obtained for station 2.3 and 2.5. The station 2.3 data were obtained to assist Pratt and Whitney Aircraft in their design method verification. Data were acquired for preswirl vane settings of 0 to 20 degrees. No further actuation above 20 degrees was available. A preswirl vane setting of 20 degrees positioned the vane leading edge approximately parallel with the inlet hardware

axis. The swirl and total pressure data most representative of the engine profile data were for 20 degrees PSV setting. The swirl angle variation from hub-to-tip was 8 degrees with a maximum and average deviation from the desired profile of 9 and 3 degrees, respectively. The swirl distribution measured at station 2.3 was within agreement of the desired profile by an average of 4 degrees. The measured profiles also indicated that more vane angle actuation would improve the agreement. The average and maximum total pressure profile variation from the engine profiles was 3 and 5 percent, respectively. This average 3 percent variation represents 20 percent of the hub-to-tip gradient of total pressure in the engine.

Although the improved preswirl vane and screen design did generate more representative profiles, it was envisioned that further improvements could be made through experimentally determined modifications. Streamline analysis was unable to predict the profiles at station 2.5 for a given vane angle setting. This is primarily due to the high angle of attack (of the flow generated at station 2.3) on the support struts at station 2.5. The struts are positioned at 70 degrees (90=axial) while station 2.3 flow angles range from 50 to 64 degrees. An additional reason for the failure of the profiles measured at station 2.5 to match engine profiles is the difference between engine and rig intermediate cases. The engine intermediate case was of an F100(3) while the rig intermediate case is of an F100(2). The F100(3) case station 2.5 ID wall protrudes farther into the flow path than the F100(2). The F100(2) intermediate case was selected for the rig test because it was anticipated that an F100(3) case would result in flow separation in the rig test. Therefore, a match of the inlet hardware station 2.3 profiles to the F100(3) engine station 2.3 profiles did not assure a station 2.5 match.

Due to these conditions, modifications to the screens and vanes were made and further experimental efforts were undertaken. Due to the difficulty in obtaining an accurate match of station 2.5 swirl and total pressure profiles on the first attempt, it was decided that measurements were required downstream of the IGV's to determine the flow sensitivity at this location to differences at station 2.5. After one preswirl modification and two screen changes, profiles determined adequate for the rig test were obtained. From measurements behind the IGV's, it was determined that the swirl profile, behind the IGV's, was insensitive to changes at station 2.5. It was also found that the total pressure profile, behind the IGV's, was sensitive to these changes, therefore, additional effort was taken to assure a match between engine and rig total pressure profiles at station 2.5. Swirl data obtained from the final

configuration at station 2.5 deviated from the desired data by a maximum of 7.5 degrees and an average of 3.4 degrees for a PSV setting of 23 degrees. With the knowledge of the IGV's effect on swirl distribution, this profile match was acceptable. Agreement between engine and rig station 2.5 total pressure profiles for this PSV setting was obtained within 1.5 percent. This average variation is 11 percent of the total hub-to-tip total pressure gradient in the engine.

In addition, total pressure and swirl angle circumferential variation was determined. From measurements made in six of the eight locations, a maximum of five degrees swirl variation and an average of four degrees variation were determined. The average variation circumferentially in total pressure was 20 percent of the total hub-to-tip gradient. It should be noted that the circumferential variation measured in the inlet hardware test may differ from CRF/F100 rig variations. This is due to the inability to simulate the upstream effects the compressor will have on the inlet in our tests. It is anticipated that the compressor will lessen the circumferential variation and, in addition, have some effect on both the total and swirl absolute profiles. These effects will be determined during the CRF/F100 rig test since base line conditions have been generated in these tests.

A summary of the best results obtained for all test phases is shown in Table 6. This table indicates the difficulty in obtaining both swirl and total pressure profile matches in Phase II for the same preswirl vane setting. A setting of 25 degrees provided improved matching of total pressure profiles over Phase I, while resulting in a poorer match of swirl profiles. A 29 degree setting results in an improved swirl profile match and a poorer total pressure match over Phase I results. The table also indicates that Phase III results for a PSV setting of 23 degrees indicates improvements in both total pressure and swirl angle profile over all previous phases of testing. The profiles obtained from this phase of testing match the engine profiles more accurately than any previous F100 core engine test. With these profiles simulated, the CRF/F100 compressor performance data obtained can be transferred directly to engine configurations. Therefore, the efforts to simulate fan discharge conditions in the CRF/F100 rig inlet were successful.

これできた。種類ではないないないは、他のものものもののできないという。

TABLE 6

INLET HARDWARE TEST RESULTS

	EXISTING PRESWIRL VANES	MODIFIED PRESWIRL VANES AND SCREENS PHASE I	VANES AN	PRESWIRL D SCREENS E II	MODIFIED PRESWIRL VANES AND SCREENS PHASE III
PRESWIRL VANE ANGLE	10 ⁰	20 ⁰	25 ⁰	29 ⁰	23 ⁰
Average Swirl Variation From Desired (% of Total Engine Spanwise Variation) 130	32	28	44	26	26
Maximum Swirl Variation From Desired % of Total Engine Spanwise Variation 130	58	68	84	58	57
Average Total Pressure Variation From Desired (% of Total Engine) Spanwise Gradient 15%		20	15	28	11
Maximum Total Pressure Variation From Desired (% of Total Engine) Spanwise Gradient 15%		33	40	46	20

SECTION VIII

SUMMARY

- a. A microprocessor based data acquisition system was utilized to provide swirl measurements at the inlet of an F100 core compressor with ± 1 degree accuracy and pressure measurements with ± 1 percent uncertainty.
- b. Experimentally measured, swirl angle, total pressure, static pressure and total temperature profiles were documented for an F100 Series (3) engine at stations 2.3 and 2.5.
- c. With the total pressure and swirl angle profiles as goals, a CRF/F100 rig inlet configuration was designed to provide these profiles.

SECTION IX

CONCLUSIONS

The following conclusions can be drawn from the results of this program.

- a. Differences in F100(3) and F100(2) intermediate cases resulted in difficulty in obtaining exact duplication of the desired results.
- b. The desired station 2.5 swirl angle profile for engine design speed of 12,700 RPM was matched within an average of 3 degrees in the CRF/F100 inlet hardware.
- c. The desired station 2.5 total pressure profile for the engine at design speed was matched within 11 percent of the total hub-to-tip engine gradient.
- d. Circumferential variations in both swirl angle and total pressure profiles do exist at station 2.5 due to the eight support struts creating individual flow passages. The magnitude of these variations may change due to the upstream effects by the compressor in the rig test.
- e. Swirl distribution downstream of the inlet guide vanes is not affected (within the accuracy of the measurements made) by variations at station 2.5.
- f. Total pressure distribution downstream of the IGV's is affected by variations at station 2.5. Therefore to assure the rig test results can be transferred to engine conditions these station 2.5 total pressure profiles must be matched.

SECTION X

RECOMMENDATIONS

The following recommendations are made for the CRF/F100 compressor component test performed in the Compressor Research Facility.

- a. Obtain data detailing inlet profiles at station 2.5 with the compressor connected to the inlet hardware. Conclusions can be drawn from this information defining upstream effects resulting from the compressor downstream, thereby providing experimental information to assist in theoretical modeling of compressor effects on the upstream flow field.
- b. Determine if the pressure of the compressor down stream reduces the circumferential swirl and total pressure variations measured in this test. These circumferential variations and possible separated flow distortions may reduce the performance of the compressor and, therefore, the F100 engine.
- c. Determine the effect these simulated fan discharge profiles have on compressor performance by obtaining performance data with and without the screens and vanes defined in this report. This information will provide for a better understanding of effects of a fan on the performance of the high pressure compressor in the F100 engine.

APPENDIX A

ENGINE CORE INLET TEST PREPARATION

TABLE A-1

WEDGE PROBE CALIBRATION RESULTS (S/N B1625)

PT-PATM in. H ₂ 0	$P1-PATM$ in. H_2O	P1-P2 in. H ₂ 0	P1-P3 in. H ₂ 0	CPS	CPT	MACH#
70.73	70.20	63.50	63.25	.901	666*	.488
57.90	57.80	52.30	52,35	. 904	866.	.445
48.70	48.60	44.15	44.15	906.	866.	.409
37.55	37.45	33.85	34.00	. 903	766.	.361
27.10	27.05	24.55	24.65	806.	866.	.308
21.10	21.05	19.20	19.20	.910	766.	.273
17.30	17.30	16.00	15,85	.920	1.00	.247
14.55	14.55	13.35	13,35	.918	1.00	.227
10.90	10.95	10.15	10.15	.932	1.00	.197
7.80	7.85	7,30	7.30	936	1,00	167

966.

.905

Average

WEDGE PROBE ANGLE CALIBRATION RESULTS

PI in. $H_2^0 = 31.2$ Nominally	ominally									
* (deg)	r.	4-	۳	-5	7	+1	+5	+3	+4	+5
$P1 - P2 (in. H_2^0)$	31.1	30.5	29.7	28.9	28.1	26.75	26.10	25.40	24.60	23.70
P1 - P3 (in. H ₂ 0)	24.3	24.7	25.6	26.3	27.0	28.3	28.85	29.45	30.15	30.70
P2 - P3 (in. H ₂ 0)	6.8	8,8	4.1	2.6	1.1	-1.55	-2.75	-4.05	-5.55	-7.0
Pl in. $H_2^0 = 58.7$ Nominally	ominally									
(ded)	-5.5	-4.5	-3.5	-2.5	-1.5	r.	1.5	2.5	3.5	4.5
P1 - P2 (in. H ₂ 0)	58.0	9.99	55,5	54.45	53.2	51.1	49.6	48.4	46.7	45.1
P1 - P3 (in. H ₂ 0)	42.3	44.4	46.5	48.1	49.5	51.6	53.15	54.3	55.5	56.35
P2 - P3 (in. H ₂ 0)	15.7	12.2	0.6	6,35	3.7	-0.5	-3,55	-5.9	8.8	-11.25
P1 in. $H_2^0 = 84.4$ Nominally	ominally									
(ded)	-5.5	-4.5	-3.5	-2.5	-1.5	ñ,	1.5	2.5	3.5	4.5
$P1 - P2 (in. H_2^0)$	83.4	81.2	80.1	79.0	77.1	73.4	71.5	0.69	67.3	64.5
P1 - P3 (in. H20)	0.09	62.8	65.4	67.6	9.07	74.0	75.9	78.0	79.3	80.7
P2 - P3 (in. H ₂ 0)	23.4	18.4	14.7	11.4	6.5	9.0-	-4.4	0.6-	-12	-16.2

* Positive angle clockwise looking down on probe

TABLE A-3 TRAVERSE CALIBRATION

LIN	IEAR	ANO	GULAR
Position (Inches)	Potientometer Output (Volts)	Position (Degrees)*	Potientometer Output (Volts)
0.000	-0.533	35	-2.970
0.500	-1.888	30	-3.445
1.000	-3.160	25	-3.928
1.500	-4.494	20	-4.444
2.000	-5.763	15	-4.876
2.500	-7.101	10	-5.430
3.000	-8.377	8	-5.557
3.500	-9.736	6	-5.775
4.000	-11.035	4	-5.920
4.500	-12.398	2	-6.135
5.000	-13.774	0	-6.325
5.500	-15.243	-2	-6.503
		-4	-6.685
		-6	-6.880
Angle defined	as follows	-8	-7.078
	2/1	-10	-7.226
+a	1	-15	-7.732
·/	3 ~	-20	-8.194
positive count	er clockwise	-25	-8.680
looking down o		-30	-9.125

-35

-9.595

TABLE A-4
TRANSDUCER BENCH CALIBRATIONS

0 - 1 : S/N 13		0 - 15 S/N 10		0 - 50 S/N 44	
ressure (PSI)	Output (mV)	Pressure (PSI)	Output (mV)	Pressure (PSI)	Output (mV)
0.000	-0.53	0.000	-0.29	0.000	-0.400
0.200	3.50	3.000	14.70	10.00	14.64
0.400	7.53	6.000	29.70	20.00	29.65
0.600	11.54	9.000	44.80	30.00	44.68
0.800	15.55	12.000	59.85	40.00	59.72
1.000	19.58	15.000	74.85	50,00	74.76
0.800	15.54	12.000	59.84	40.00	59.81
0.600	11.54	9.000	44.78	30.00	44.69
0.400	7.52	6.000	29.70	20.00	29.66
0.200	3.50	3.000	14.70	10.00	14.64
0.000	-0.53	0.000	-0.30	0.00	-0.40

ON-LINE PRESSURE CALIBRATION PROCEDURES

From the four calibration pressures provided during the data taking ess, the output voltages are stored. The voltages correspond to the zero maximum pressure points for each transducer. The output voltages are ned in the program as follows:

R[I,K] where I and K are derived from the following table

	I				
•	K	1	2	3	<u>-</u>
	1	0 psid	0 psid	0 psid	_
	2	0 psid	4 psid	35 psid	
	3	0 psid	4 psid	35 psid	
	4	0 psid	0 psid	0 psid	

The transducer intercept is determined from the voltages stored in R for and I=4. The slopes are determined from the voltages stored in the R ix as follows:

$$Q[2,K] = MCP[K]/(R[2,K] - R[1,K])$$

$$Q[3,K] = MCP[K]/(R[3,K] - R[4,K])$$

re MCP[K] is the maximum calibration pressure for K transducer and Q[2,K] the first slope for the K transducer before data is obtained and Q[3,K] is second slope determined after the data was obtained.

The intercepts are defined as follows:

$$Q[1,K] = R[1,K] * Q[2,K]$$

$$Q[4,K] = R[4,K] * Q[3,K]$$

re Q[1,K] is the first intercept for the K transducer and Q[4,K] is the and intercept for the K transducer after the data was obtained.

percent change from the first to the second calibration for both and intercept is defined as follows:

$$r[K+2] = \frac{Q[2,K] - Q[3,K]}{Q[3,K]}$$
 (slope K=2,3)

$$r[K] = \frac{Q[1,K] - Q[4,K]}{Q[1,K]}$$
 (intercept K=1,2,3)

r is the percent change during data taking. These values are printed d compared during the data taking process.

34 FORMAT(1M0.10x. +TOTAL PRESSURE PSIG+,10x, +UNCERTAINTY PERCENT+,10x
C. *STATIC PRESSURE PSIG* 10x * * UNCERTAINTY PERCENT*)
00 50 K=1.*X

WRITELO, 35 PPTT(K), UPTT(K), PST(K), UPST(K) 35 FORMAT(1MO.18X+F5.2,26X+F4.1,24X+F5.2,26X+F4.1) 50 CONTINUE 9 CONTINUE END

Figure B-2 (Cont'd)

STATES STATES STATES AND STATES A

1/ FURMALLIMU.CUA. TRANSUULER SENSITIVITY CHANNEL PL-P2 = 0.F10.7.2x. CVQLTS/SUPPLY VOLT / PSI +-0.F10.7.2x. CVQLTS/SUPPLY VOLT / PSI +-1.F10.7.2x. CVQLTS/SUPPLY VOLT / PSI +-1.F10.7.2x. CVQLTS/SUPPLY VOLT / PSI +-1.F10.7.2x. CVQLTS/SUPPLY VOLT / PSI +-1.F10.5.2x. CVQLTS/SUPPLY VOLT / PSI +-1.F10.5.2x. CVQLTS/SUPPLY CVQLTS/SUPPLY VOLT / PSI +-1.F10.5.2x. CVQLTS/SUPPLY VOLT / PSI +-1.F10.5x. CVQLTS/SUPPLY VOLT / PSI +-1.F10.	23 FORMATILHO, 20 X, ***********************************	5.2X.eVOLTS#) (IMO.2QX.*TRANSDUCER SENSITIVITY CHANNEL P3-P2 ***FIG.7.2X SUPPLY VOLT / PSI +-**FIG.7.2X.*VOLTS/SUPPLY VOLT / PSI#) (IMO.2QX.*ANGLE CALIBRATION CONSTANT ***FIG.2.2X.*PSID/DEG.6.*)	20 FORMAT(1MO,30X,***********************************	MRITE(6,221UPT1,UPT3,UPT3,UPT42,UPT42,UPT6,UPT8,UPT9,UPT10,UPT102,U 22 CRMATILHO,12(Fil.s)) MRITE(6,30) 30 FORHAT(1H0) MRITE(6,31)PT,UPTA,UPT 31 FORHAT(1H0) C.5x,*UNCERTAINTY IN TOTAL PRESSURE =*,Flo.1,2x,*PPERCENT OF READING C.5x,*UNCERTAINTY IN TOTAL PRESSURE =*,Flo.1,2x,*PPERCENT OF READING	WRITE(6.21) WRITE(6.21) WRITE(6.22) WRITE(6.22) WRITE(6.22) WRITE(6.32) WRITE(## WRITE(6,20) ## RITE(6,20) ## RITE(6,20) ## RITE(6,29) ## RITE(6,29,101,1042,043,044,0442,045) ## RITE(6,29,101,104,042,043,044,044,0442,045) ## RITE(6,30) ## RITE(6,30) ## RITE(6,31,40) ## RITE(6,31
175	001	165	199	200	205	215

Figure B-2 (Cont'd)

				•						:				
UC=(8C+2+SC)	DA1-C/(AA0ESA5A) DA2-EUA0C/(AA0ESA5A) DA3-EUA0C/(AA0ESA0SA) DA3-EUA0C/(AA0ESA0SA)	000C/(000ESA0) (000ESA0SA)	UAI=DAI #EDA*UEDA/100.0 UAZ=DAZ #AA*UAA/100.0 UA3=DA3#ESA*UESA/100.0	UA4=DA4*USA UA42=DA42*USA2*SA/100.0 UA5=DA5*UC*C/100.0	* AUEDA-(UEOA/100.0)+EOA AUAA-(UAA/100.0)+AA AUESA-(UESA/100.0)+ESA AUSA-USA-(USA2/100.0)+SA AUC-(UC/100.0)+C	UAA-(UA1**2+UA2**2+UA3**2+(UA4+UA42)**2+UA5**2)**0.5 UA-(UAA/A)*100.0	101.	151.	231	MRTE(6,24)AA,AUAA MRTTE(6,25)ESA,AUESA MRTTE(6,26)SA,AUSA MRTTE(6,27)C,AUC	7 FORMAT(IMI) 8 FORMAT(IMI) 10 FORMAT(IMI,58X,*CASE NUMBER*,I5) 10 FORMAT(IMI,20X,*QUTPUT VOLTAGE CHANNEL PI =*,FI0.5,2X,*VOLTS +-*,F C10.5,2X,*VOLTS*) 11 FORMAT(IMO,20X,*AMPLIFIER GAIN CHANNEL PI =*,FI0.5,2X,*VOLTS/VOLT C +-*,FI0.5,2X,*VOLTS/VOLT*)	IHG. 20X, * SUPPLY VOLTAGE CHANNEL PI = *, * * * * * * * * * * * * * * * * *	15 FORMATCIMO, 20x, *AMPLIFIER GAIN CHANNEL PI-P2 -*, FIO. 5, ZX, *VOLTS/VO CLT +-*, FIO. 5, ZX, *VOLTS/VOLT*)	Figure B-2 (Cont'd)
	120	125		130	135	140			150	155	160	105	170	· · · · · · · · · · · · · · · · · · ·

	UPT10=DPT10=USD UPT102=DPT102=USD2+SD/100.0		1
59 02	AUED1-(UED1/100.0)+ED1 AUA1-(UA1/100.0)+ED1 AUS1-(UES1/100.0)+ES1 AUS1-(US1/100.0)+ES1 AUCD1-(UCD1/100.0)+EDD AUCPT-(UCP1/100.0)+EDD AUCPS-(UCP5/100.0)+EDD AUCPS-(UCP5/100.0)+ESD AUSD-(USD2/100.0)+ESD AUSD-USD2/100.0)+SD		
	UPTA=(UPT1**2+UPT2**2+UPT3**2+(UPT4+UPT42)**2+UPT5**2+UPT6*2+UPT7 C**2+UPT8**2+UPT9**2+(UPT10+UPT102)**2)**0.5		
	PT=((EQ1-0FF1)/(A1+ES1+S1))+(EQD-0FF0)+(1-GPT)/(CPS+AD+ES0+SD))		
• 08	PS1.00(EOD-OFFD) +CPT/(CPS+AO+ESD+SD)+((EOL-OFF1)/(A1+ES1+S1)) DPS1-DPT1 DPS2-0PT2		
8 0	DPS3=DPT3 DPS4=DPT4 DPS42=DPT42 DPS5==CPT/(CPS*AD*ESD*SD)		
06	DPS6=0PT6 DPS2=1=1_00 (EQD_QFFD) (CPS+2+ADES50+SD) DPS6=(=1_00+EQD_OFFD) (CPT)/(CPS+ADES50+SD) DPS9=(=1_00+EQD_OFFD) (CPT)/(CPS+ADES50+2PSD) DPS102=(-1_0+EQD_OFFD) (CPT)/(CPS+ADES50+SD) DPS10=(-EQDF+CPT)/(CPS+ES0+SD)		!
\$6	UPS1=DPS1=(EGI-GFF1) = UEG1/100.0 UPS2=DPS2=A1=UA1/100.0 UPS3=DPS3=ES1=UES1/100.0		
105	UPSS-207542 USIZ #S1/100.0 UPSS-0755 (E0D-0FF) + UE0D/100.0 UPSS-0756CP FUCPS/100.0 UPSS-0758 ADD HOLD/100.0 UPSS-0758 ADD HOLD/100.0 UPSS-0755 UPSS-0750 UPSS-07		
	UPSA=(UPS1**2.4UPS2**2.4UPS3**2.4(UPS4+UPS.42)**2.4UPS5**2.4UPS6**2.4UPS7 C**2.4UPSA(PS)**100.0 A=EQAC(/(AA*ESA*SA)	: :	
	UEQA-BEQA-2+SEQA UAA-BAA-2+SAA UESA-BESA-2+SESA	; ; ; ;	:

Figure B-2 (Cont'd)

PAGGAM UNC (INPUT, QUIPUT, TAPES=INPUT, TAPES=COUTPUT) DIMENSION PIT(30), UPIT(30), PSI(30), UPSI(30) READ(5, 0)NC OO 9 J=1,NC MRITE(6,7) WRITE(6,30)	MRITE(6,30) READ(5,0)A1,ED1F,CPT,CPS,AD,ESD,SD,EDDF,QFF1,QFFD READ(5,0)A1,SE1,SE1,SE1,SE1,SE1,SE1,SE1,SE1,SE1,SE	READ(5,*1N DO 40 1=1,N READ(5,*)ECD,ECDA UEC1=BED1<25ED1 UA1=BA1+25A1 US1=BES1+25SS1 US1=BES1+25SS1 US1=BES1+25SS1 US1=BES1+25SS1 US1=BES1+25SS1 US1=BES1+25SS1 US1=BES1+25SS1 US1=BES1+25SS1 US1=BES1+25SS1 US1=BES1+25SS1 US1=BES1+25SS1 US1=BES1+25SS1 US1=BS1+2	UCPT=8CPT>20SCPT UCPS=6CPT>20SCPT UACPS=6CPT>20SCPS UACPS=6CPT>20SCPS UACPS=6CPT>20SCPS USD=(BSD>20SD)100.0 USD2=(BSD>20SD)100.0 USD2=(BSD>20SD)100.0	<pre>DPT2=-(E01-OFF1)/(A100251051) DPT3=-(E01-OFF1)/(A1002512) DPT42=-(E01-OFF1)/(A1002512) DPT42=-(E01-OFF1)/(E010021002) DPT4=-(E01F)/(E010021002) DPT6=-(E01F)/(E010021002) DPT6=-(E01F)/(E010021002) DPT7=-(E01F)/(E010021002) DPT7=-(E01F)/(E010021002) DPT7=-(E01F)/(E010021002) DPT7=-(E01F)/(E010021002) DPT10=-(E01F)/(E010021002) DPT10=-(E01F)/(E010021002) DPT10=-(E01F)/(E010021002) DPT10=-(E01F)/(E010021002)</pre>	• UPT1=OPT1=(E01-OFF1) + UE01/100.0 UPT3=DPT2=A1+UA1/100.0 UPT3=DPT2=E1 + UE51/100.0 UPT3=DPT3=E2 + UE51/100.0 UPT4=OPT4=C1 + UE51/100.0 UPT4=DPT4=C1 + UE07/100.0 UPT4=DPT6=C1 + UE07/100.0 UPT7=DPT6=C1 + UE07/100.0 UPT8=OPT8=C1 + UE07/100.0 UPT8=OPT8=DPT6=C1 + UE07/100.0 UPT8=OPT8=DPT6=C1 + UE07/100.0 UPT8=OPT8=DPT6=C1 + UE07/100.0
	5.7	90	30	04	56

Figure B-2. Unrertainty Analysis Program Listing and Output

The uncertainty of the static pressure is defined as follows:

$$U_{PS} = \pm \left[\left(\frac{\partial PS}{\partial E_{01}} U_{E_{01}} \right)^{2} + \left(\frac{\partial PS}{\partial A_{1}} U_{A_{1}} \right)^{2} + \left(\frac{\partial PS}{\partial E_{S1}} U_{E_{S1}} \right)^{2} + \left(\frac{\partial PS}{\partial S_{1}} U_{S_{1}} \right)^{2} \right]$$

$$+ \left(\frac{\partial PS}{\partial E_{0d}} U_{E_{0d}} \right)^{2} + \left(\frac{\partial PS}{\partial CPT} U_{CPT} \right)^{2} + \left(\frac{\partial PS}{\partial CPT} U_{CPS} \right)^{2} + \left(\frac{\partial PS}{\partial S_{d}} U_{S_{d}} \right)^{2} \right]^{1/2}$$

$$\left(\frac{\partial PS}{\partial A_{d}} U_{A_{d}} \right)^{2} + \left(\frac{\partial PS}{\partial E_{Sd}} U_{E_{Sd}} \right)^{2} + \left(\frac{\partial PS}{\partial S_{d}} U_{S_{d}} \right)^{2} \right]^{1/2}$$

$$(20)$$

The portions of Equation 20 that deal with U_{S_1} and U_{S_d} as before were broken to two parts. Uncertainty in percent of full scale and percent of sensitivity.

Computer Program

Equations 16 and 20 were solved through the use of a computer program. The agram required input of all data system component uncertainties, $U_{E_{01}}$, U_{A_1} , (bias a precision), etc., transducer sensitivities S_1 and S_d , amplifier gains A_1 and A_d , apply voltages E_{S_1} and E_{S_d} , output voltages E_{01} and E_{0d} , transducer offset tages E_{01f} and E_{0df} and total static pressure coefficients CPT and CPS. The output tages input into the program corresponded to the range of pressures to be usured during the test. All input values and their respective uncertainties are need out for data input verification. The overall uncertainty in total and attic pressure and each component's contribution to that uncertainty is determined a printed out. Theoretical angle measurement uncertainties were not considered, as use were determined through repetitive calibrations of the traverse system. The agram listing and output are shown in Figure B-2.

WAL-TR-84-2030

$$\frac{\partial PT}{\partial S_{1}} \quad U_{S_{1}} = \left[\left(-E_{01F} - E_{01f} \right) / \left(A_{1} \cdot E_{S1} \cdot S_{1}^{2} \right) \right] U_{S_{1F}} + \left[-\left(E_{01} - E_{01f} \right) / \left(A_{1} \cdot E_{S1} \cdot S_{1}^{2} \right) \right] U_{S_{1S}}$$
(17)

ıd

$$\frac{\partial PT}{\partial S_{d}} U_{S_{d}} = \left[\left(E_{0dF} - E_{0df} \right) \left(1 - CPT \right) \left(CPS \cdot A_{d} \cdot E_{Sd} \cdot S_{d}^{2} \right) \right] U_{S_{dF}}$$

$$+ \left[- \left(E_{0d} - E_{0df} \right) \left(1 - CPT \right) \left(CPS \cdot A_{d} \cdot E_{Sd} \cdot S_{d}^{2} \right) \right] U_{S_{dS}}$$
(18)

where E_{Olf} = P1 transducer full scale output voltage

 U_{S1F} = P1 transducer full scale error

 U_{S1S} = P1 transducer sensitivity error

 E_{Odf} = P1 - P2 transducer full scale output voltage

 U_{SdF} = P1 - P2 transducer full scale error

 $U_{S_{dS}}$ = P1 - P2 transducer sensitivity error

. Static Pressure Uncertainty

Equation 4 can be rewritten as the following

$$PS = -[(P1 - P2)/CPS) + PT$$

The following equation is obtained by substituting Equations 13 and 14 into e above equation.

$$PS = -\{([(E_{0d} - E_{0df}) * CPT]/(CPS * A_d * E_{Sd} * S_d)]\} + [(E_{01} - E_{01f})/(\Lambda_1 * E_{S1} * S_1)]$$
(19)

$$PT = [(E_{01} - E_{01f})/(A_1 * E_{S1} * S_1)] + [(E_{0d} - E_{0df})(1 - CPT)]/$$

$$(CPS * A_d * E_{Sd} * S_d)$$
(14)

III. Uncertainty Definition

A. From Kline and McClintock, square law of error Propogation, as defined in Reference 10, the uncertainty in a measurement can be defined as

$$U_{R} = \pm \left[\left(\frac{\partial R}{\partial M_{1}} U_{M_{1}} \right)^{2} + \left(\frac{\partial R}{\partial M_{2}} U_{M_{2}} \right)^{2} + \dots + \left(\frac{\partial R}{\partial M_{i}} U_{M_{i}} \right)^{2} \right]^{1/2}$$
(15)

B. For Equation 14 the uncertainty is defined as follows:

$$+\left(\frac{\partial PT}{\partial E_{Sd}} U_{E_{Sd}}\right)^2 + \left(\frac{\partial PT}{\partial S_d} U_{Sd}\right)^2$$

Where
$$U_{E_{01}}$$
, U_{A_1} , $U_{E_{S1}}$, U_{S_1} , $U_{E_{0d}}$, U_{CPT} , U_{CPS} , U_{A_d} , $U_{E_{Sd}}$, U_{S_d}

are the data system component uncertainties. These are divided into bias and precision which are carried through the equations separately to determine the system overall bias and precision uncertainty components. The overall uncertainty in PT is defined as follows:

$$U_{PT} = \left(U_{PT_B} + 2 U_{PT_S}\right)$$
Bias Precision

Manufacturer's specifications for transducer accuracies are given in both percent of sensitivity and percent of full scale output, therefore, the following terms were used to define the transducers contribution to the overall system uncertainties.

where S_1 = Sensitivity of the P1 transducer

 E_{tl} = Pl transducer output voltage

 E_{S1} = P1 transducer supply voltage

also

$$S_d = E_{td}/[E_{Sd} * (P1 - P2)]$$
 (7)

where S_d = Sensitivity of the (P1-P2) transducer

 $E_{td} = P1 - P2$ transducer output voltage

 E_{Sd} = P1 - P2 transducer supply voltage

Rearranging both Equations 6 and 7

$$P1 = E_{+1}/(E_{S1} * S_1)$$
 (8)

and

$$(P1 - P2) = E_{td}/(E_{Sd} * S_d)$$
 (9)

2. For the amplifiers

$$E_{01} - E_{01f} = E_{t1} \wedge A_{1}$$
 (10)

where E_{01} = P1 amplifier output voltage

 E_{Olf} = Pl amplifier zero offset voltage

 $A_1 = Pl$ amplifier gain

and

$$E_{0d} - E_{odf} = E_{td} * A_{d}$$
 (11)

where E_{od} = P1 - P2 amplifier output voltage

 E_{odf} = P1 - P2 amplifier zero offset voltage

 $A_d = P1 - P2$ amplifier gain

 $\,$ P1 and P1 - P2 can be defined by substituting Equations 10 and 11 into 9 and 10.

P1 =
$$(E_{0d} * E_{01.f})/(A_1 * E_{S1} * S_1)$$
 (12)

and

$$(P1 - P2) = (E_{0d} - E_{0df})/(A_d * E_{Sd} * S_d)$$
 (13)

Therefore, by substituting Equations 12 and 13 into Equation 5, the following can be obtained.

II. Measurement Equations for Uncertainty Analysis

A. The following definitions are used to define the total and static pressure uncertainties as measured from the wedge probe.

$$CPT = \frac{P1 - PS}{PT - PS} \tag{1}$$

where CPT = Wedge probe total pressure coefficient

P1 = Wedge probe total pressure

PS = "True" static pressure

PT = "True" total pressure

Equation 1 can be re-written as

$$PT = [(P1 - PS)/CPT] + PS$$
 (2)

Also

$$CPS = (P1 - P2)/(PT - PS)$$
 (3)

where CPS = Wedge probe static pressure coefficient

P1 - P2 = Wedge probe static pressure

Equation 3 can be rewirtten as

$$PS = -[(P1 - P2)/CPS] + PT$$
 (4)

B. Total pressure measurement uncertainty

Combining Equations 2 and 4

$$PT = P1 + [(P1 - P2)/CPS] - [(CPT/CPS) * (P1 - P2)]$$
 (5)

It is noted that P1 - P2 and P1 - P3 from the wedge probe are measured on the same transducer and averaged in the final analysis. Because the same transducer is used, only one value (P1-P2) is considered in the uncertainty analysis.

The data system equations can be defined as follows

1. For the transducers

$$S_1 = E_{t1}/(E_{S1} * P1)$$
 (6)

UNCERTAINTY IN PRESSURE MEASUREMENT

I. Block Diagram

The system uncertainty was determined for the configuration shown in Figure B-1.

These functional blocks define the components whose uncertainties will be considered in determining the overall uncertainty.

Figure B-1. Measurement Uncertainty Block Diagram

APPENDIX B

DATA SYSTEM UNCERTAINTY ANALYSIS

```
57: ret
58: "CLAVG":
59: for L=10 to 16;0+E; for J=1 to 5;E[\Lambda, L, J]+E+E
60: next J; E/5+F[A,L]; next L
61: ret
62: 35/(R[2,3]-R[1,3])+0[2,3];35/(R[3,3]-R[4,3])+0[3,3]
63: 4/(R[2,2]-R[1,2])+0[2,2];4/(R[3,2]-R[4,2])+0[3,2]
64: -R[1,3]*Q[2,3]+Q[1,3];-R[4,3]*Q[3,3]+Q[4,3]
65: -R\{1,2\}*Q\{2,2\}*Q\{1,2\}; -R\{4,2\}*Q\{3,2\}*Q\{4,2\}
66: -R[1,1]*Q[3,1]+O[1,1];-R[4,1]*O[3,1]+O[4,1]
67: (Q[1,3]-Q[4,3])*2.8571+r1; (O[1,2]-O[4,2])*25+r2
63: 100*(0[2,3]-0[3,3])/0[3,3]*r3;100*(0[2,2]-0[3,2])/0[3,2]*r4
69: (Q[1,1]-O[4,1])*100+r5
70: fmt 1,15x,"0-50 PSID",9x,"0-15 PSID",9x,"0-1 PSID",/
71: wrt 6.1; fxd 5
72: wrt 6,"Y-INT", 0[4,3], 0[4,2], 0[4,1]; wrt 6,"% 010", r1,r2,r5
73: wrt 6,"SLOPE", 0[3,3], 0[3,2]; wrt 6,"% 010",r3,r4
74: qto 76
75: wrt 6;wrt 6,"TIME:",T$[7]
76: ent "CONTINUC?",C$; if cap(C$) ="N";qto 11
77: gto 79
78: rcf N,D[*],R[*],E[*],H[*],Z[*],P
79: qsb "step":wait 200
80: qsb "step"; wait 200
81: "DATA RED.":
82: for A=1 to 2;gsb "ERAVG"
83: next A
84: M*C[1,8]+C[2,8]+G;M*C[1,9]+C[2,9]+!
85: .998+G;.905+H
86: for I=1 to 2; for K=1 to 3; for L=1 to 3
37: Z[I,K,L]*Q[3,K]+O[4,K]+Y[I,K,L]
88: next L;next K;next I
89: for L=1 to 3
90: (Y[1,2,L]+Y[2,2,L])/(2*H)+O[L]
91: Y[2,3,6]-O[6]+P*G+S[6]
92: S[L]+O[L]+T[L]; / (5((T[L]/S[L])^2.2857-1))+M[L]
93: next L
94: for L=10 to 16
95: F[1,L]*C[1,L]+C[2,L]+F[3,L]
96: F[2,L]*C[1,L]+C[2,L]+F[4,L]
97: (F[2,L]-F[1,L])*100/F[2,L]+F[5,L]
98: next L
99: fmt 2,/,5x,"RUN NO.=",f4.0,8x,"Patm",f7.2,x,"PSIA",8x,"PTP",f7.2
100: wrt 6.2, N, P, Y[1,3,2]+P
101: fmt 3,/,10x,"Pl-Patm",10x,"Pl-P2",11x,"P3-P2",13x,"AC",14x,"DC",/
102: fmt 4,f14.3,7x,f8.3,8x,f8.3,10x,f8.5,8x,f8.4
103: fmt 8,f12.4,8x,f8.4,9x,f8.4,7x,f8.4
104: wrt 6.3
105: wrt 6.4, "MAX", Y[2,3,1], Y[2,2,1], Y[1,1,1], Z[1,5,1], Z[1,4,1]
106: wrt 6.4, "AVG", Y[2,3,2], Y[2,2,2], Y[1,1,2], Z[1,5,2], Z[1,4,2]
107: wrt 6.4, "MIN", Y[2,3,3], Y[2,2,3], Y[1,1,3], Z[1,5,3], Z[1,4,3]
108: fmt 5,/,10x, "WEDGE RAD",7x, "WEDGE ROT",10x, "HW RAD",9x, "HN ROT",/
109: wrt 6.5
110: wrt 6.8, "VALUE", F[4,13], F[4,14], F[4,15], F[4,16]
111: wrt 6.8, "% CHG", F[5,13], F[5,14], F[5,15], F[5,16]
112: fmt 6,/,10x,"TEMP(F)",5x,"FAN SPEED",5x,"CORE SPEED",/
113: fmt 9,f11.1,8x,f6.0,8x,f6.0
114: wrt 6.6
115: wrt 6.9, "VALUE", F[4,10], F[4,11], F[4,12]
116: wrt 6.9, "% CHG", F[5,10], F[5,11], F[5,12]
117: fmt 7,/,10x,"PT=",f7.2,3x,"PS=",f7.2,3x,"MACH NO=",f6.2,5/
118: wrt 6.7,T[2],S[2],M[2]
119: gto 9
120: end
121: for I=1 to 2; for J=1 to 36
122: wrt 6,D[I,1,J],D[I,2,J],D[I,3,J]
123: next J; wrt 6; next I
*27483
```

```
0: dim T$[14],D[2,3,36],P[4,3],C[4,10:16,5],H[4:5,36],Z[2,5,3],P,F[5,10:16]
1: dim Cs[1], S[3], Q[4,3], T[3], O[3], B[3], M[3], C[2,8:16], Y[2,5,3]
2: dsp "SET TIME(wrt 709,""TDMMDDHHMMSS"")"; sto
3: 1+C[1,9];0+C[2,9]
4: 38788+C[1,10];45+C[2,10];100+C[1,11];0+C[2,11]
5: 100+C\{1,12\};0+C\{2,12\};-.38183+C[1,13];-.2104+C[2,13]
6: 10.582+C[1,14];66.77+C[2,14];-.40351+C[1,15];-.204+C[2,15]
7: 10.861+C[1,16];93.8+C[2,16];.24878+Q[3,1]
8: ent "Patm",P
9: ent "POINT NO.?", N; ldf N,D[*],R[*],E[*],H[*],Z[*],P;gtc 62
10: fxd 0;gsb "home"
ll: for I=1 to 2; if 1=2; gsb "step"
12: wait 5000;1+F;gsb "scan"
13: next I
14: for I=1 to 2;qsb "step"
15: wait 5000;0+F;gsb "scan"
l6: next I; wrt 709, "AC5"; wrt 722, "HS0E2"; gsb "step"
17: wait 2000;5+K;gsb "scanil"
18: wrt 722, "J"; 4+K; gsb "scanll"
19: for I=3 to 4; if I=4; 4sb "step"
20: if I=4; wait 5000
21: 1+F;gsb "scan"
22: next I; qsb "home"
23: sfg 14;gto 62
24: "scan":
25: if F=1; if I#1; if I#4; jmo 2
26: wrt 709, "AC1";1+K; gsb "F?"
27: wrt 709, "AC2";2+K; gsb "F?"
28: wrt 709, "AC3";3+K;gsb "F?"
29: if I=1; if F=1; gsb "EC"
30: if I=4;gsb "EE"
31: ret
32: "F?":if F=1;gsb "scanC"
33: if F=0;gsb "scanD"
34: ret
35: "scanC":wrt 722, "HSM002L1RS130STN.1STIM2T3QX1"
36: rds(722) +S; if S#66; jmp 0
37: wrt 722, "REM"; red 722, R[I,K]
33: ret
39: "scanD":wrt 722,"H.1SII36STNSO1M2T3"
40: for J=1 to 36; red 722, D[I,K,J]; next J
41: "stat":wrt 722, "REM"; red 722, 2[I,K,2]; wrt 722, "PUL"; red 722, 7[I,K,3]
42: wrt 722, "REU"; red 722, 2(I, K, 1)
43: ret
44: "scanil":wrt 722,".1STI36STNSO1M2T3"
45: fcr J=1 to 36; red 722, H[K,J]; next J;1+I
46: gsb "stat"
47: ret
48: "step":wrt 709, "DC1,1"; wait 10; wrt 709, "DO1,1"
49: ret
50: "home":wrt 709, "DC1,2"; wait 3000; wrt 709, "D01,2"
51: ret
52: "EC":wrt 709, "SIARAF10AL16"; if I=1;1+A
53: if I=4;2+A
54: for L=10 to 16; wrt 709, "ASVN5SOLVF) VS1VT3VS"; for J=1 to 5
55: red 709, [A,L,J]; next dinext h
56: if I=1; wrt 709, "TD"; red 709, T$
```

Figure A-1. P072 Engine Test Data Acquisition Program Listing

.02C00 VOLTS/VOLT

AMPLIFIER GAIN CHANNEL PI . 100.00000 VOLTS/VOLT ...

.00000 VOLTS

.30000 VOLTS +-

CUTPUT VOLTAGE CHANNEL P1 +

1 VOLIS/SUPPLY VOLT / PS1 +0000002 VOLIS/SUPPLY VOLT / PS1 1.5 +0000016 VOLTS 1.17 **VOLIS/SUPPLY VOLT / PS1 +0000008 VOLTS/SUPPLY VOLT / PS1 1.00998 1.17 **VOLIS/SUPPLY VOLT / PS1 +0000008 VOLTS/SUPPLY VOLT / PS1 1.00998 1.18 **0000014 VOLTS 1.18 **010600 VOLTS/VOLT 1.18 **010600 VOLTS/VOLT 1.18 **010600 VOLTS/VOLT 1.18 **010600 VOLTS/VOLT 1.19 **0000014 VOLT / PS1 **0000076 VOLTS/SUPPLY VOLT / PS1 1.10 **010600 VOLTS/VOLT 1.11 **000000000000000000000 1.12 **000000000000000000000 1.13 **000000000000000000000 1.14 **000000000000000000000 1.15 **000000000000000000000 1.17 **000000000000000000000 1.18 **000000000000000000000 1.19 **000000000000000000000 1.10 **000000000000000000000 1.10 **000000000000000000000000000 1.10 **00000000000000000000000000 1.10 **00000000000000000000000000 1.10 **00000000000000000000000000 1.10 **00000000000000000000000000 1.10 **0000000000000000000000000000000 1.10 **0000000000000000000000000000000 1.10 **00 1.10 **000	
**O000002 VOLTS/SUPPLY VOLT / VOLT 0000008 VOLTS/SUPPLY VOLT 0000076 VOLTS/SUPPLY VOLT 0000030000000509 2.3 PERCENT OF READING SD CPT 0000030004100509	ž
PSI0000002 VOLTS/SUPPLY VOLT / PSI0000006 VOLTS/SUPPLY VOLT / PSI0000076 VOLTS/SUPPLY VOLT D/DEG. SD	- 00
PSI000002 VOLTS/SUPPLY VOLT / PSI0000008 VOLTS/SUPPLY VOLT / PSI0000076 VOLTS/SUPPLY VOLT / PSI00000700500900509005009005	CPS
PSI0000002 VOLTS/SUPPLY VOLT / . VOLTS/VOLT / PSI0000076 VOLTS/SUPPLY VOLT D/DEG. SD	و
PSI0000002 VOLTS/SUPPLY VOLT / PSI VOLTS/VOLT / PSI0000076 VOLTS/SUPPLY VOLT / VOLTS/VÖLT / PSI0000076 VOLTS/SUPPLY VOLT / D/DEG.	000
PSI +0000002 VOLTS/SUPPLY VOLT / PSI VOLTS/VOLT / PSI +0000008 VOLTS/SUPPLY VOLT / VOLTS/VOLT / PSI +00000076 VOLTS/SUPPLY VOLT / D/DEG.	CPS
PSI +0000002 VOLTS/SUPPLY VOLT / PSI VOLTS/VOLT / PSI +0000008 VOLTS/SUPPLY VOLT / VOLTS/VOLT / PSI +00000076 VOLTS/SUPPLY VOLT /	
PSI0000002 VOLTS/SUPPLY VOLT / PSI VOLTS/VOLT / PSI0000008 VOLTS/SUPPLY VOLT /	`
PSI +0000002 VOLTS/SUPPLY VOLT / PSI VOLTS/VOLT / PSI +0000008 VOLTS/SUPPLY VOLT /	
PSI +0000002 VOLTS/SUPPLY VOLT / PSI VOLTS/VOLT	
PSI +0000002 VOLTS/SUPPLY VOLT / PSI VOLTS/VÖLT / PSI +0000008 VOLTS/SUPPLY VOLT /	
PSI +0000002 VOLTS/SUPPLY VOLT / PSI VOLTS/VOLT	
PSI0000002 VOLTS/SUPPLY VOLT / PSI VOLTS/VOLT / PSI0000008 VOLTS/SUPPLY VOLT /	:
PSI +0000002 VOLTS/SUPPLY VOLT /	
PSI0000002 VOLTS/SUPPLY VOLT /	`
PSI0000002 VOLTS/SUPPLY VOLT /	_
PSI +0000002 VOLTS/SUPPLY VOLT /	•
	•
	. S

GUTPUT VOLTAGE CHANNEL PI63900 VOLTS +00001 VOLTS
AMPLIFIER GAIN CHANNEL PI . 100.00000 VOLTS/VOLT +02000 VOLTS/VOLT
SUPPLY VOLTAGE CHANNEL P1 - 12.00000 VOLTS +00048 VOLTS
TRANSDUCER SENSITIVITY CHANNEL PL 0001253 VOLTS/SUPPLY VOLT / PSI +0000002 VOLTS/SUPPLY VOLT / PSI
OUTPUT VOLTAGE CHANNEL PI-P250800 VOLTS +0000041 VOLTS
AMPLIFIER GAIN CHANNEL P1-P2 = 100.00000 VOLTS/VOLT +02000 VOLTS/VOLT
SUPPLY VOLTAGE CHANNEL P1-P2 - 12.00000 VOLTS +00048 VOLTS
TRANSDUCER SENSITIVITY CHANNEL PL-P20004177 VOLTS/SUPPLY VOLT / PSI +00006008 VOLTS/SUPPLY VOLT / PSI
TOTAL PRESSURE COEFFICIENT
STATIC PRESSURE COEFFICIENT 90000 +01080
QUIPUT VOLTAGE CHANNEL P3-P202000 VOLTS +0000028 VOLTS
AMPLIFIER GAIN CHANNEL P3-F2 = 200.00000 VOLTS/VOLT +28000 VOLTS/VOLT
SUPPLY VOLTAGE CHANNEL P3-P2 - 12.00000 VOLTS +01680 VOLTS
TRANSDUCER SENSITIVITY CHANNEL P3-P20016600 VOLTS/SUPPLY VOLT / PSI +0000076 VOLTS/SUPPLY VOLT / PSI
ANGLE CALIBRATION CONSTANT - 52.80 PSID/DEG. +58080 PSID/DEG.
UNCERTAINTIES DUE TO COMPONENTS (PSI)
ED1 A1 ES1 S1 E00 A0 ES0 S0 CPT CPS
.0000040000180498800361 .0000000000000000300000000119000003
TOTAL PRESSURE - 4.52 PSIG05 PSI UNCERTAINTY IN TOTAL PRESSURE - 1.2 PERCENT DF READING
UNCERTAINTIES DUE TO COMPONENTS (PST)
<u>E01 A1 E51 S1 E00 A0 E50 S0 CPT CPS</u>
.000040009000498800361000010000501659000950119001428
STATIC PRESSURE - 3.33 PSIG+06 PSI UNCERTAINTY IN STATIC PRESSURE - 1.0 PERCENT OF READING
UNCERTAINTLES DUE TO COMPONENTS (PSI)
EDA AA ESA SA C
.00004000370006900053 .00292
ANGLE = .27 DEGREES +00320 DEG. UNCERTAINTY IN ANGLE = 1.2 PERCENT OF READING
Figure 8-2 (Cont'd)

.02000 VOLTS/VOLT

AMPLIFIER GAIN CHANNEL PI . 100.00000 VOLTS/VOLT

OUTPUT VOLTAGE CHANNEL PI .

*00001 VOLTS

. 90000 VOLTS +-

THANSOURE SENSITIVITY CHANNEL PI - 2 - 1,0001233 VQL15/SUPLY VQL1 F 951 - ,0000002 VQL15/SUPLY VQL1 F 951	SUPPLY VOLTAGE CHANNEL P1 = 12.00000 VOLTS +00048 VOLTS
DUTPLIT VOLTAGE CHANNEL PI-P2 - 1,00000 VOLTS/TOLT +00000 VOLTS/TOLT SUPPLY VOLTAGE CHANNEL PI-P2 - 100,00000 VOLTS/TOLT TRANSCORGER SENSITY CHANNEL PI-P2000177 VOLTS/SUPPLY VOLT / PS1 +0000009 VOLTS/SUPPLY VOLT TOLTAL PRESSURE COEFFICIENT90000 + .01000 STATIC PRESSURE COEFFICIENT90000 + .01000 OUTPUT VOLTAGE CHANNEL PI-P2000177 VOLTS/SUPPLY VOLT / PS1 +0000009 VOLTS/SUPPLY VOLT ANDLIFIER CAIN CHANNEL PI-P200000 VOLTS20000 PS1D/DEG. ANDLIFIER CAIN CHANNEL PI-P2001000 VOLTS00000 PS1D/DEG. ANDLIFIER CAIN CHANNEL PI-P200000 VOLTS00000 PS1D/DEG. ANDLIFIER CAIN CHANNEL PI-P200000 VOLTS00000 PS1D/DEG. ANDLIFIER CAIN CHANNEL PI-P200000 PS1D/DEG. ANDER CAIN CHANNEL PI-P200000 PS1D/DEG. ANDLIFIER CAIN CHANNEL PI-P200000 PS1D/DEG. FIGURE PI-P2000000 PS1D/DEG. FIGURE PI-P200000 PS1D/DEG. FIGURE PI-P200000 PS1D/DEG. FI	CHANNEL PI = .0001253 VOLTS/SUPPLY VOLT / PSI +0000002 VOLTS/SUPPLY VOLT /
Supply VOLTAGE CHANNEL P1-P2 - 100-00000 VOLTS/VOLT +02000 VOLTS/VOLT Supply VOLTAGE CHANNEL P1-P2 - 12,00000 VOLTS00041 VOLTS TOMADOGER SENSITIVITY CHANNEL P1-P2000417 VOLTS STATIC PRESSURE COEFFICIENT9000000690 STATIC PRESSURE COEFFICIENT9000000690 VOLTS SUPPLY VOLTAGE CHANNEL P3-P200000 VOLTS01640 VOLTS SUPPLY VOLTAGE CHANNEL P3-P200000 VOLTS01640 VOLTS SUPPLY VOLTAGE CHANNEL P3-P200000 VOLTS01640 VOLTS SUPPLY VOLTAGE CHANNEL P3-P200000 VOLTS	P1-P2 - 1.00000 V0LTS +0000080
SUPPLY VOLIAGE CHANNEL P1-P2 = 12.00000 VOLIS	. P1-P2 = 100.00000 VOLTS/VOLT +-
TRANSDUCER SENSITIVITY CHANNEL P1-P2 = .0004177 VGLTS/SUPPLY VGLT / PSI +0000000 VGLTS/SUPPLY VGLT	. P1-P2 = 12.00000 VOLTS +00048
10714 PRESSURE COEFFICIENT99800 +01080	CHANNEL P1-P20004177 VOLTS/SUPPLY VOLT / PSI +0000008 VOLTS/SUPPLY VOLT /
STATIC PRESSURE COEFFICIENT	-+ 00866.
SUPPLY VOLTAGE CHANNEL P3-P203000 VOLTS01680 VOLTS / .01680 VOLTS / .01	-+ 00000 +-
SUPPLY VOLTRICE CHANNEL P3-P2 - 200.00000 VOLTS/VOLT 26000 VOLTS SUPPLY VOLTRICE CHANNEL P3-P2 - 12.00000 VOLTS/SUPPLY VOLTS TAANSOUCER SENSITIVITY CHANNEL P3-P2 - 12.00000 VOLTS/SUPPLY VOLT / PS1 +	P3-P2 = .03000 VOLTS0000042
SUPPLY VOLTAGE CHANNEL P3-P2 - 12.00000 VOLTS/SUPPLY VOLT TAANSDUCER SENSITIVITY CHANNEL P3-P20016600 VOLTS/SUPPLY VOLT / PSI +0000076 VOLTS/SUPPLY VOLT AMCLE CALIBRATION CONSTANT - 32.60 PSID/DEC. +58080 PSID/DEC. UNCERTAINTIES DUE TO COMPONENTS IPSI J EDD AD ESD SD CPT 0012500025049880550000000000000000000279 001250002504988005000004600009016590018202279 TATIC PRESSURE - 3.47 PSIG07 PSI UNCERTAINTY IN STATIC PRESSURE - 1.7 PERCENT OF READING UNCERTAINTIES DUE TO COMPONENTS IPSI J ON AA ESA SA C 000560005600066900060 .00437 FIGURE40 DEGREES00469 DEC. UNCERTAINTY IN ANGLE - 1.2 PERCENT OF READING FIGURE40 DEGREES00469 DEC. UNCERTAINTY IN ANGLE - 1.2 PERCENT OF READING	P3-P2 - 200.00000 VOLTS/VOLT
TRANSDUCER SENSITIVITY CHANNEL P3-P20016600 VOLTS/SUPPLY VOLT / PSI0000076 VOLTS/SUPPLY VOLT / PSI PSI0000076 VOLTS/SUPPLY VOLT / PSI	. P3-P2 - 12.00000 VOLTS +01680 VOLTS
ANGLE CALIBRATION CONSTANT - 52.80 PSID/DEC. +58080 PSID/DEC. A1 ESI 00125000250049880050000000000000000000000000000000000279 001250002500498800500000000000000000000000018200279 001250002500498800500000020000000009016590018202279 TATIC PRESSURE - 0.0025004988005000000000000016590018202279 TATIC PRESSURE - 0.0050000900000000000016590018202279 MICERTAINTIES DUE TO COMPONENTS (PSI) NA ESA SA C DOGO00056000560006000080 .00437 FIGURE B-2 (CONE'd)	CHANNEL P3-P2 = .0016600 VOLTS/SUPPLY VOLT / PSI +0000076 VOLTS/SUPPLY VOLT /
### ES1 ### ES1 ###################################	- 52.80 PSID/DEC. +58080
FESSURE - 6.26 PSIG .00500 00000 00000 00000 00000 02279 00125 004988 00500 00000 00000 00000 00000 00000 02279 .00125 .00025 04988 00500 00004 00009 01659 00182 02779 .00125 00025 04988 00500 00004 00009 01659 00182 02779 .00125 00025 04988 00500 00002 00004 00009 01659 00182 02779 .00125 .00025 00006 00000 00009 00	UNCERTAINTIES DUE TO COMPONENTS (PS))
00125000250498800500000000000000000000000000002279 DTAL PRESSURE - 6.26 PSIG+06 PSI UNCERTAINTY IN TOTAL PRESSURE - 1.0 PERCENT OF READING UNCERTAINTIES DUE TO COMPONENTS (PSI) 00125000250498800500000020004600009016590018202279 TATIC PRESSURE - 3.47 PSIG+07 PSI UNCERTAINTY IN STATIC PRESSURE - 1.7 PERCENT OF READING 0A AA ESA SA C 0006000560006900080 .00437 Figure B-2 (Cont'd) Figure B-2 (Cont'd)	A1 E51 51 E00 A0 E50 S0 CPT
A1 PRESSURE - 6.26 PSIG+06 PSI UNCERTAINTY IN TOTAL PRESSURE - 1.0 PERCENT OF READING A2	00125000250498800500 .00000000000000030000002279
UNCERTAINTIES DUE TO COMPONENTS (PSI) A1 ESI 00125000250498800500000020004600009016590018202279 FATIC PRESSURE - 3.97 PSIG+07 PSI UNCERTAINTY IN STATIC PRESSURE - 1.7 PERCENT OF READING DA AA ESA SA C DOGG00056000560006900080 .00437 Figure 8-2 (Cont'd)	- 6.26 PSIG+06 PSI UNCERTAINTY IN TOTAL PRESSURE - 1.0 PERCENT OF
A1 ES1 00125000250498800500000020004600009016590018202279 [A71C PRESSURE - 3.97 PSIG+07 PSI UNCERTAINTY IN STATIC PRESSURE - 1.7 PERCENT OF READING DA AA ESA SA C 300600056000560006900080 .00437 Figure 8-2 (Cont'd)	ES DUE TO COMPONENTS (PSI)
00125000250498800500000020004600009016590018202279 [ATTIC PRESSURE - 3.97 PSIG+07 PSI UNCERTAINTY IN STATIC PRESSURE - 1.7 PERCENT OF READING UNCERTAINTIES DUE TO COMPONENTS (PSI) AA AA ESA SA C 300600056000560006900080 .00437 Figure B-2 (Cont'd)	A3 E51 51 E00 A0 E50 S0 CPT
C PRESSURE 3.97 PSIG+	
AA ESA SA C AA ESA SA C 16000560006900080 .00437 E40 DEGREES00469 DEG. UNCERTAINTY IN ANGLE - 1.2 PERCENT OF Figure B-2 (Cont'd)	- 3.97 PSIG07 PSI UNCERTAINTY IN STATIC PRESSURE - 1.7
1600056000560006900080 .00437 16000560005600069 DEG. UNCERTAINTY IN ANGLE - 1.2 PERCENT OF Figure B-2 (Cont'd)	
00056000560006900080 .00437	AA ESA SA
40 DEGREES00469 DEG. UNCERTAINTY IN ANGLE - 1.2 PERCENT OF Figure B-2 (Cont'd)	00056000560006900080
Figure B-2 (Cont'd)	40 DEGREES +00469 DEG. UNCERTAINTY IN ANGLE . 1.2 PERCENT OF
Figure B-2 (Cont'd)	
	Ligure B-2 (cont. d)

GUTPUT VOLTAGE CHANNEL PI . I.	1.53000 VO	Valts00001	11 VOLTS			
AMPLIFIER GAIN CHANNEL PI . 100.	100.00000 VBI	VOLTS/VOLT +-	.02000 VOLTS/VOLT	//017		
SUPPLY VOLTAGE CHANNEL PI . 12.	12.00000 VO	¥0FTS +00048	18 VOLTS			
TRANSDUCER SENSITIVITY CHANNEL PI	L P10001253		VOLTS/SUPPLY VOLT / PSI	00000002 VG	VOLTS/SUPPLY VOLT /	PSI
OUTPUT VOLTAGE CHANNEL P1-P2 =	1.55000	VOLTS +00	.0000124 VOLTS			
AMPLIFIER GAIN CHANNEL PI-P2 - 1	- 100.00000	VOLTS/VOLT +-	. 02000 VOL	VOL TS/VOLT		
SUPPLY VOLTAGE CHANNEL PI-P2 =	- 12.00000	VOLTS +	.00048 VOLTS			
TRANSDUCER SENSITIVITY CHANNEL P	P1-P2 =	.0004177 VOLTS/SUPPLY VOLT /		PSI 10000008	VOLTS/SUPPLY VOLT	T / PSI
TOTAL PRESSURE COEFFICIENT =	-+ 00866	86600	***************************************			
STATIC PRESSURE COEFFICIENT =	00006	.01080		!	: :	
OUTPUT VOLTAGE CHANNEL P3-P2 -	.04000	VOLTS +0000056	10056 VOLTS			
AMPLIFIER GAIN CHANNEL P3-P2 - 2	- 200-00000	VOLTS/VOLT +-	-28000 VOL	VOL TS/VOLT	AND TO THE PERSON NAMED IN COLUMN TO	,
SUPPLY VOLTAGE CHANNEL P3-P2 =	12.0000	VOLTS +-	.01680 VOLTS	*		
TRANSDUCER SENSITIVITY CHANNEL P	P3-P2 =	0016600 VOLTS	.0016600 VOLTS/SUPPLY VOLT / PSI	92000000 -+ IS4	VOLTS/SUPPLY VOLT	T / PSI
ANGLE CALIBRATION CONSTANT .	\$2.80 PSID/DEG.	STD/DEG. +-	.58080 PSID/DEG	•93		:
UNCERTAINTIES DUE TO C	DUE TO COMPONENTS (PST)	(15 d)				
E01 A1 E51 51		€00 AD	. ESD	80	CPT	CPS
.00008002090004200008	00835	00000 00000	00000 00	0000300001	1001 03495	00008
TOTAL ODECCIOE a 10 AS OCTEAN	150 60	NI YINIYINI	IN TOTAL PRESSURE		PERCENT OF READING	ي.
			: :			
UNCERTAINTIES	DUE TO COMPONENTS	(154)		-		
EO1 A1 ES1 S1		E00 AD	650	20	•	£ ;
	00835	0000300070		1659	0028003495	04195
STATIC PRESSURE - 6.95 PSIG+-	.08 PSI	UNCERTAINTY IN	IN STATIC PRESSURE	SSURE = 1.2	PERCENT OF READING	ING
UNCERTAINTIES DUE TO	TO COMPONENTS (PSI	(PSI)			F	
EOA AA ESA SA	. VS	3				
0000- 60000- +1000- +1000- 100000	0. 00100	.00583		•	:	
ANGLE 53 DEGREES00618	0E G.	UNCERTAINTY IN ANGLE	1	1.2 PERCENT OF	READING	
			· · · · · · · · · · · · · · · · · · ·	!	an Market for	

Figure B-2 (Cont'd)

167

P1 = 12.00000 P1-P2 = 1.60000 P1-P2 = 1.60000 P1-P2 = 12.00000 P1-P2 = 1.60000 P1-P2 = 1.600000 P1-P2 = 1.6000000 P1-P2 = 1.60000000 P1-P2 = 1.60000000 P1-P2 = 1.600000000 P1-P2 = 1.600000000 P1-P2 = 1.60000000 P1-P2 = 1.60000000 P1-P2 = 1.6000000000 P1-P2 = 1.60000000 P1-P2 = 1.600000000 P1-P2 = 1	OUTPUT VOLTAGE CHANNEL PI - 1.90000 VOLTS +00002 VOLTS AMPLIFIER GAIN CHANNEL PI - 100,00000 VOLTS/VOLT +02000 VOLTS/VOLT
TRANSDUCER SENSITIVITY CHANNEL P1-P2 - 1.48000 VOLT50000144 VOLT S SUPPLY VOLTGE CHANNEL P1-P2 - 1.48000 VOLT5000449 VOLT5 SUPPLY VOLTGE CHANNEL P1-P2 - 1.200000 VOLT5000449 VOLT5 TRANSDUCER SENSITIVITY CHANNEL P1-P2 - 1.200000 VOLT5000449 VOLT5 TRANSDUCER SENSITIVITY CHANNEL P1-P2000477 VOLT5/SUPPLY VOLT / PST +0000006 VOLT5/SUPPLY VOLT / PST TOTAL PRESSURE COFFICIENT90000000000 VOLT5/VOLT28000 VOLT5/VOLT SUPPLY VOLTGE CHANNEL P1-P2000000 VOLT5/VOLT28000 FSID/OFG. AME CALIBATION CONSTANT280000 VOLT5/VOLT28000 FSID/OFG. SUPPLY VOLTGE CHANNEL P1-P2000000 VOLT5/VOLT28000 FSID/OFG. AME CALIBATION CONSTANT28000 VOLT5/VOLT28000 FSID/OFG. AME CALIBATION CONSTANT2800	P1 = 12.00000 VOLTS +00048
OUTPUT VOLTAGE CHANNEL P1-P2 - 1.40000 VOLTS/VOLT + 00000 VOLTS/VOLT FS SUPER CAIN CHANNEL P1-P2 - 100.00000 VOLTS/VOLT FS SUPER CAIN CHANNEL P1-P2 - 100.00000 VOLTS/SUPPLY VOLT FS SUPER CAIN CHANNEL P1-P2 00001 → 00000 VOLTS/SUPPLY VOLT FARSSURE COFFICIENT 00000 → 00000 P0LTS/SUPPLY VOLT FS FS SUPER CAIN CHANNEL P3-P2 00000 → 00000 VOLTS/SUPPLY VOLT FARSSURE CAIN CHANNEL P3-P2 00000 VOLTS/SUPPLY VOLT FARSSURE CAIN CHANNEL P3-P2 00000 VOLTS/SUPPLY VOLT FS SUPPLY VOLTAGE CHANNEL P3-P2 00000 VOLTS/SUPPLY VOLT FS SUPPLY	TRANSDUCER SENSITIVITY CHANNEL PI0001253 VOLTS/SUPPLY VOLT / PSI +0000002 VÖLTS/SUPPLY VOLT /
TAMEDICES SENSITY VOLTAGE CHANNEL P1-P2 - 12.00000 VOLTS	P1-P2 - 1.80000 VOLTS0000144
SUPPLY VOLTGE CHANNEL P1-P20004177 VOLTS/SUPPLY VOLT PRANSDUCER SENSITIVITY CHANNEL P1-P20004177 VOLTS/SUPPLY VOLT PSSSURE COFFICIENT996000004177 VOLTS/SUPPLY VOLT PRESSURE COFFICIENT996000004017 VOLTS/SUPPLY VOLT PSSSURE COFFICIENT996000004017 VOLTS/SUPPLY VOLT PSSSURE COFFICIENT996000004017 VOLTS/SUPPLY VOLT PSSSURE COFFICIENT0004000 VOLTS/SUPPLY VOLT PSSSURE PS	PI-P2 = 100.00000 VOLTS/VOLT +02000
TRANSDUCER SENSITIVITY CHANNEL P1-P20004177 VQLTS/SUPPLY VQLT / PSI +0000006 VQLTS/SUPPLY VQLT TOTAL PRESSURE COEFFICIENT9900001000 STATIC PRESSURE COEFFICIENT9900001000 STATIC PRESSURE COEFFICIENT99000 VQLTS0000070 VQLTS ANPELFIER CAIN CHANNEL P3-P209000 VQLTS20000 VQLTS/VQLT ANEL CALIBRATION CONTANTE P3-P2000000 VQLTS/VQLT / PSI0000076 VQLTS/SUPPLY VQLT ANAL ESI STATIC PRESSURE12.91 PSIG01032000	P1-P2 - 12.00000 /0LTS +00048
TOTAL PRESSURE COEFFICIENT	CHANNEL P1-P2 = .0004177 VOLTS/SUPPLY VOLT / PSI +0000008 VOLTS/SUPPLY VOLT /
STATIC PRESSURE COEFFICIENT90000 +01000 OUTPUT VOLTAGE CHANNEL P3-P205000 VOLTS +0000070 VOLTS ANPLIFIER CAIN CHANNEL P3-P2005000 VOLTS/VOLT20000 VOLTS/VOLT SUPPLY VOLTAGE CHANNEL P3-P20050600 VOLTS/SUPPLY VOLT / PSI +0000076 VOLTS/SUPPLY VOLT ANALE CALIBRATION CONSTANT0050600 VOLTS/SUPPLY VOLT / PSI +0000076 VOLTS/SUPPLY VOLT ANALE CALIBRATION CONSTANT00000 VOLTS/SUPPLY VOLT / PSI +0000076 VOLTS/SUPPLY VOLT ANALE CALIBRATION CONSTANT00000 VOLTS/SUPPLY VOLT / PSI +0000076 VOLTS/SUPPLY VOLT ANALE CALIBRATION CONSTANT00000 VOLTS/SUPPLY VOLT ANALE SI ESI SI CONFORMATS (PSI) ANALE000	ENT = .99800 +-
ANTELETER CALMEL P3-P205000 VOLTS +05000 VOLTS VOLTS ANTELETER CALMEL P3-P2050000 VOLTS/VOLT20000 VOLTS/VOLT SUPPLY VOLTACE CHANNEL P3-P2050000 VOLTS/SUPPLY VOLT TRANSDUCER SENSITIVITY CHANNEL P3-P2056600 VOLTS/SUPPLY VOLT TRANSDUCER SENSITIVITY CHANNEL P3-P2056600 VOLTS/SUPPLY VOLT ANGLE CALIBRATION CONSTANT - 52.60 PSID/DEG. +500000500076 VOLTS/SUPPLY VOLT ANGLE CALIBRATION CONSTANT - 52.60 PSID/DEG. +5000000000000076 VOLTS/SUPPLY VOLT ANGLE CALIBRATION CONSTANT - 52.60 PSID/DEG. +50000000000000100001 ANGLE CALIBRATION CONSTANT - 52.60 PSID/DEG. +50000000000000100001 ANGLE CALIBRATION CONSTANT - 52.60 PSID/DEG. +00000000000000100001 ANGLE CALIBRATION CONFONENTS (PSI) ANGLE CALIBRATION CONTANT IN ANGLE - 1.2 PERCENT OF READING FIGURE B-C00093000930000690013300729 FIGURE B-C. (CONTANT IN ANGLE - 1.2 PERCENT OF READING FIGURE B-C000930000690013300729	000006
ANDLETEER CAIN CHANNEL P3-P2 = 200.00000 VOLTS/VOLT28000 VOLTS/VOLT SUPPLY VOLTAGE CHANNEL P3-P2 = 12.00000 VOLTS/SUPPLY VOLT / PSI0000016 VOLTS/SUPPLY VOLT ANGLE CALIBRATION CONSTANT = 52.80 PSID/DEG. +58080 PSID/DEG. UNCERTAINTIES DUE TO COMPONENTS (PSI) A1 ES1 SI ED ED ED COMPONENTS (PSI) A1 ES1 SI ED ED ED COMPONENTS (PSI) A1 ES1 SI ED ED ED ED COMPONENTS (PSI) A1 ES1 SI ED ED ED COMPONENTS (PSI) A2 A2 ES3 PSIG0005200052000330000300034000360003600037000360003700036000370003800037000370003900037000370003900037	P3-P2 = .05000 VOLTS +0000070
SUPPLY VOLTAGE CHANNEL P3-PZ = 12.00000 VOLTS +01680 VOLTS TRANSDUCER SENSITIVITY CHANNEL P3-PZ = .0016600 VOLTS/SUPPLY VOLT / PSI +0000076 VOLTS/SUPPLY VOLT / ANGLE CALIBRATION CONSTANT = 52.80 PSIQ/DEG58080 PSIQ/DEG. UNCERTAINTIES DUE TO COMPONENTS (PSI) A1 ESI SI COMPONENTS (PSI) UNCERTAINTIES DUE TO COMPONENTS (PSI) A1 ESI SI COMPONENTS (PSI) 00258000520498801032000030000100016016590032404048 TATIC PRESSURE8.65 PSIG069 PSI UNCERTAINTY IN STATIC PRESSURE - 1.0 PERCENT OF READING UNCERTAINTIES DUE TO COMPONENTS (PSI) 0A AA ESA SA SA SA SA SA C C FIGURE B-2 (CONT') FIGURE B-2 (CONT')	P3-P2 = 200.00000 VOLTS/VOLT +28000
TRANSDUCER SENSITIVITY CHANNEL P3-P2	P3-P2 - 12.00000 VOLTS +01680
ANGLE CALIBRATION CONSTANT - 52.00 PSID/DEG. +50080 PSID/DEG. UNCERTAINTIES DUE TO COMPONENTS (PSI) 00256000520049801032 .0000000000000030000104048 OTAL PRESSURE - 12.91 PSIG07 PSI UNCERTAINTY IN TOTAL PRESSURE6 PERCENT OF READING A1 ES1 51 50 E0D A0 ESD ED	TRANSDUCER SENSITIVITY CHANNEL P3-P2
UNCERTAINTIES DUE TO COMPONENTS (PSI) A1 ES1 00258005204968010320000000000000030000104048 OTAL PRESSURE - 12.91 PSIG+07 PSI UNCERTAINTY IN TOTAL PRESSURE0 PERCENT OF READING UNCERTAINTIES DUE TO COMPONENTS (PSI) 002580005204968010320000300061016590032404048 TATIC PRESSURE - 6.65 PSIG+09 PSI UNCERTAINTY IN STATIC PRESSURE - 1.0 PERCENT OF READING AA A ESA SA C 0000900093000930013300729 Figure B-2 (Cont'd)	- 52.80 PSID/DEG. +58080 PSID/DEG.
A1 ES1 SI EED AD ESD CPT 00256000520498801032 .00000000000000030000104048 DIAL PRESSURE - 12.91 PSIG07 PS1 UNCERTAINTY IN TOTAL PRESSURE6 PERCENT OF READING 002580005204988010320000300016016590032404048 TATIC PRESSURE - 0.05 PSIG09 PSI UNCERTAINTY IN STATIC PRESSURE - 1.0 PERCENT OF READING AA AA ESA SA C 000990009300093000133 .00729 Figure B-2 (Cont'd)	DUE TO COMPONENTS (PSI)
002580005200498801032 .000000000000000000030000104048 OTAL PRESSURE - 12.91 PSIG+07 PSI UNCERTAINITY IN TOTAL PRESSURE6 PERCENT OF READING A1 ESI	A1 E51 51 E00 A0 E50 50 CPT
TOTAL PRESSURE - 12.91 PSIG+07 PSI UNCERTAINTY IN TOTAL PRESSURE6 PERCENT OF READING UNCERTAINTIES DUE TO COMPONENTS (PSI) E01 A1 ES1	00258000520498801032 .000000000000000000030000104048
UNCERTAINTIES DUE TO COMPONENTS (PSI) A1 ES1 00258004988010320000300016010590032404048 TATIC PRESSURE - 6.885 PSIG+09 PSI UNCERTAINTY IN STATIC PRESSURE - 1.0 PERCENT OF READING DA AA ESA C DO09000930006900133 .00729 Figure B-2 (Cont'd)	TOTAL PRESSURE . 12.91 PSIG+07 PSI UNCERTAINTY IN TOTAL PRESSURE6 PERCENT OF
A1 ES1 00258000520498801032000030008100016016590032404048 TATIC PRESSURE - 8.85 PSIG+09 PSI UNCERTAINTY IN STATIC PRESSURE - 1.0 PERCENT OF READING DA AA ESA SA C DO0900093000930006900133 .00729 NGLE66 DEGREES +000768 DEG. UNCERTAINTY IN ANGLE - 1.2 PERCENT OF READING Figure B-2 (Cont'd)	DUE TO COMPONENTS
00258000520498801032000030008100016016590032404048 TATIC PRESSURE - 6.85 PSIG09 PSI UNCERTAINTY IN STATIC PRESSURE - 1.0 PERCENT OF READING UNCERTAINTIES DUE TO COMPONENTS (PSI) DA AA ESA SA C DO009000930006900133 .00729 Figure B-2 (Cont'd)	A1 E51 51 E0D A0 ESO 50
STATIC PRESSURE - 6.85 PSIG+09 PSI UNCERTAINTY IN STATIC PRESSURE - 1.0 UNCERTAINTIES DUE TO COMPONENTS (PSI) EDA AA ESA SA C .0000900093000930006900133 .00729 ANGLE66 DEGREES +00768 DEG. UNCERTAINTY IN ANGLE - 1.2 PERCENT OF REA	00258000520498801032000030008100016016590032404048
EDA AA ESA SA C .00009000930006900133 .00729 ANGLE66 DEGREES00768 DEG. UNCERTAINTY IN ANGLE - 1.2 PERCENT OF	- 8.85 PSIG+09 PSI UNCERTAINTY IN STATIC PRESSURE - 1.0
00093000930006900133 .0072966 DEGREES00768 DEG. UNCERTAINTY IN ANGLE - 1.2 PERCENT OF Figure B-2 (Cont'd)	UNCERTAINTIES DUE
00093000930006900133 .00729	AA ESA SA
E66 DEGREES00768 DEG. UNCERTAINTY IN ANGLE - 1.2 PERCENT OF Figure B-2 (Cont'd)	00093 00093 00069 00133
Figure B-2 (Cont'd)	E66 DEGREES00768 DEG. UNCERTAINTY IN ANGLE . 1.2 PERCENT OF
The second secon	Flqure 8-2 (Cont'd)
	the second secon

OUTPUT VOLTAGE CHANNEL P1 = 2.40000 VOLTS +00002 VOLTS	
AMPLIFIER GAIN CHANNEL PI - 100.00000 VOLTS/VOLT +C2C00 VOLTS/VOLT	
SUPPLY VOLTAGE CHANNEL P1 - 12.00000 VOLTS +00048 VOLTS	
TRANSDUCER SENSITIVITY CHANNEL PL	=
OUTPUT VOLTAGE CHANNEL P1-P2 - 2.10000 VOLTS +0000168 VOLTS	
AMPLIFIER GAIN CHANNEL P1-P2 - 100.00000 VOLTS/VOLT +02000 VOLTS/VOLT	
SUPPLY VOLTAGE CHANNEL P1-P2 = 12.00000 VOLTS +00048 VOLTS	
TRANSDUCER SENSITIVITY CHANNEL P1-P2 = .0004177 VOLTS/SUPPLY VOLT / PSI +000C008 VOLTS/SUPPLY VOLT / PSI	PSI
TOTAL PRESSURE COEFFICIENT	
STATIC PRESSURE COEFFICIENT90000 +01080	
OUTPUT VOLTAGE CHANNEL P3-P206000 VOLTS + .0000084 VOLTS	
AMPLIFIER GAIN CHANNEL P3-P2 - 200.00000 VOLTS/VOLT28000 VOLTS/VOLT	
SUPPLY VOLTAGE CHANNEL P3-P2 - 12.00000 VOLTS +01680 VOLTS	
TRANSDUCER SENSITIVITY CHANNEL P3-P20016600 VOLTS/SUPPLY VOLT / PSI +0000076 VOLTS/SUPPLY VOLT / PSI	PSI
ANGLE CALIBRATION CONSTANT - 52.80 PSID/DEG. +58080 PSID/DEG.	
UNCERTAINTIES DUE TO COMPONENTS (PSI)	
E01 A1 E51 S1 E00 AD E50 S0 CPT CPS	. 8
.0001300325000650498801298 .000000000000003000010471200011	11000
TOTAL PRESSURE - 16.24 PSIG08 PSI UNCERTAINTY IN TOTAL PRESSURE5 PERCENT OF READING	
UNCERTAINTIES DUE TO COMPONENTS (PSI)	1
EO1 A1 ES1 S1 E00 AD ES0 SD CPT CPS	P S
.0001300325000650498801298000040001901659003770471205655	05655
STATIC PRESSURE = 11.52 PSIG+10 PSI UNCERTAINTY IN STATIC PRESSURE = .9 PERCENT OF READING	
UNCERTAINTIES DUE TO COMPONENTS (PSI)	
EDA AA C	
.00011001110006900159 .00875	
ANGLE80 DEGREES +00918 DEG. UNCERTAINTY IN ANGLE . L.2 PERCENT OF READING	
Figure B-2 (Cont'd)	

Supply Voltage Calminer P1 - 100.0000 Volt5/Volt		SUPPL	FIER GAIN Y VOLTAGE	1		VOLTS/VOLT VOLTS ←	44000	i.	/ VOL T		i	
SUPPLY VOLTAGE CHANNEL P1 - 12.00000 VOLTS00049 VOLTS		SUPPL	Y VOLTAGE	j,	12.00000	1	1					
TRANSDUCER SENSITIVITY CHANNEL P1-P2 - 2.46000 VOLTS/SUPPLY VOLT / PSI00000197 VOLTS AMPLIFIER GAIM CHANNEL P1-P2 - 12.00000 VOLTS/VOLT0000197 VOLTS SUPPLY VOLTAGE CHANNEL P1-P2 - 12.00000 VOLTS/VOLT0000197 VOLTS/VOLT SUPPLY VOLTAGE CHANNEL P1-P2 - 12.00000 VOLTS/SUPPLY VOLT / PSI000000 TOTAL PRESSURE COEFFICIENT9900001000 STATIC PRESSURE COEFFICIENT9900001000 SUPPLY VOLTAGE CHANNEL P3-P207000 VOLTS/VOLT20000 VOLTS/VOLT SUPPLY VOLTAGE CHANNEL P3-P207000 VOLTS/VOLT20000 TOTAL PRESSURE COEFFICIENT9900001000 SUPPLY VOLTAGE CHANNEL P3-P207000 VOLTS/VOLT20000 TAMPLIFIER CAIN CHANNEL P3-P220.0000 VOLTS/SUPPLY VOLT / PSI00000 TAMPLIFIER CAIN CHANNEL P3-P2001660 VOLTS/SUPPLY VOLT / PSI00000 TAMPLIFIER CAIN CHANNEL P3-P220.0000 VOLTS/SUPPLY VOLT / PSI00000 TAMPLIFIER CAIN CHANNEL P3-P220.0000 VOLTS/SUPPLY VOLT / PSI00000 TOTAL PRESSURE - 18.57 PSIG01484000000000000000 AMGLE CALIBRATION CONTAINTIES DUE TO COMPONENTS (PSI) A		TRANS		_				OLTS				•
AND TITLE RESIDENCE CHANNEL PL-P2 = 2.46000 VOLTS/VOLT +0000197 VOLTS SUPPLY VOLTAGE CHANNEL PL-P2 = 12.00000 VOLTS/VOLT +000000 VOLTS/VOLT SUPPLY VOLTAGE CHANNEL PL-P2 = 12.00000 VOLTS/SUPPLY VOLT / PSI +0000000 VOLTS/SUPPLY VOLT / PSI +000000 VOLTS/SUPPLY VOLT / PSI +0000000 VOLTS/SUPPLY VOLT / PSI +000000 VOLTS/SUPPLY VOLT / PSI SUPPLY VOLT / PSI +000000 VOLTS/SUPPLY VOLT / PSI +000000 VOLTS/SUP			OUCER SENS	ITIVITY CHA			LTS/SUPPLY	VOLT / PSI	1	102 VÖLTS/SI	UPPLY VOLT ,	184 /
Supery Voltage Channel Pi-P2 = 100.0000 VOLTS/VOLT +02000 VOLTS/VOLT		OUTPL	IT VOLTAGE			VOLTS						
SUPPLY VOLTAGE CHANNEL P1-P2 = 12.00000 VOLTS/SUPPLY VOLT / PSI +0000008 VOLTS/SUPPLY VOLT / PSI +000000 VOLTS/VOLT +200000 VOLTS/VOLT200000 VOLTS/VOLT2000000 VOLTS/VOLT2000000 VOLTS/VOLT2000000 VOLTS/VOLT2000000 VOLTS/VOLT2000000 VOLTS/VOLT2000000 VOLTS/VOLT2000000 VOLTS/VOLT2000000 VOLTS/VOLT2000000 VOLTS/SUPPLY VOLT / PSI +0000000 VOLTS/SUPPLY VOLT / PSI +0000000 VOLTS/SUPPLY VOLT / PSI +0000000 VOLTS/SUPPLY VOLT / PSI000000 VOLTS/SUPPLY VOLT / PSI0000000 VOLTS/SUPPLY VOLT / PSI0000000000 VOLTS/SUPPLY VOLT / PSI00000000 VOLTS/SUPPLY VOLT / PSI0000000 VOLTS/SUPPLY VOLT / PSI000000 VOLTS/VOLT / PSI000000 VOLTS/SUPPLY VOLT / PSI000000 VOLTS/VOLT / PSI000000 VOLTS/SUPPLY VOLT / PSI -		AMPLI	FIER GAIN	1			1	05000 VOL	TS/VOLT			
TRANSDUCER SENSITIVITY CHANNEL P1-P200004177 VOLTS/SUPPLY VOLT / PSI + .0000008 VOLTS/SURE COEFFICIENT99800 + .01080 STATIC PRESSURE COEFFICIENT99800 + .01080 GUYPUT VOLTAGE CHANNEL P3-P207000 VOLTS/VOLT28000 VOLTS/VOLT SUPPLY VOLTAGE CHANNEL P3-P207000 VOLTS/VOLT28000 VOLTS/VOLT SUPPLY VOLTAGE CHANNEL P3-P20016600 VOLTS/SUPPLY VOLT / PSI + .0000076 VOLTS/SUPPLY VOLT / PSI + .000007		SUPPL	Y VOLTAGE					VOLTS				
TOTAL PRESSURE COEFFICIENT = .99800 +00000		TRANS	DUCER SENS	ITIVITY CHA	P1-P2		VOLTS/SUPP	LY VOLT /	1		S/SUPPLY VOLT	LT / PSI
STATIC PRESSURE COEFFICIENT9000001080 OUTPUT VOLTAGE CHANNEL P3-P207000 VOLTS0000048 VOLTS AMPLIFIE GAIN CHANNEL P3-P2 - 200.00000 VOLTS/VOLT28000 VOLTS/VOLT SUPPLY VOLTAGE CHANNEL P3-P2 - 12.00000 VOLTS/SUPPLY VOLT / PSI0000076 VOLTS/S TRANSDUCER SENSITIVITY CHANNEL P3-P20016600 VOLTS/SUPPLY VOLT / PSI0000076 VOLTS/S ANGLE CALIBRATION CONSTANT52.80 PSID DEGG59080 PSID NCEG59080 PSID NCEG59080 PSID NCEG59080 PSID NCEG500		TOTAL	PRESSURE	COEFFICIENT		1	966		-			:
OUTPUT YOUTAGE CHANNEL P3-P207000 YOLTS/VOLT28000 YOLTS/VOLT SUPPLY YOLTAGE CHANNEL P3-P2 - 12.00000 VOLTS/VOLT28000 VOLTS/VOLT28000 VOLTS/VOLT		STATI	C PRESSURE	COEFFICIEN	•	1	1080			i i	:	
SUPPLY VOLTAGE CHANNEL P3-P2 - 12.00000 VOLTS/VOLT +28000 VOLTS/VOLT SUPPLY VOLTAGE CHANNEL P3-P2 - 12.00000 WOLTS +01660 VOLTS/ TRANSDUCER SENSITIVITY CHANNEL P3-P20016600 VOLTS/SUPPLY VOLT / PSI +0000076 VOLTS/S ANGLE CALIBRATION CONSTANT52.80 PSID/DEG58080 PSID/DEG. ANGLE CALIBRATION CONSTANT52.80 PSID/DEG00000000000000100001000010000740009801484000000000000000000000000100011000371000740498801484000040011000022016590044100371000740498801484000040011000022016590044100371000740498801484000040011000022016590044100371000300004900108000130001300013000130001300013000130001300013000130001300013000130	1 ! !	OUTPL	IT VOLTAGE									
SUPPLY VOLTAGE CHANNEL P3-P2 - 12.00000 #0LTS +01660 VOLTS/S TRANSDUCER SENSITIVITY CHANNEL P3-P20016600 VOLTS/SUPPLY VOLT / PSI +0000076 VOLTS/S ANGLE CALIBRATION CONSTANT - 52.40 PSID/DEG5000 PSID/DEG5000 PSID/DEG000000000 PSID/DEG000		AMPLI	FIER GAIN	- 1	•	1	!	28000 VOL	TS/VOLT			
TRAMSDUCER SENSITIVITY CHANNEL P3-P2 = .0016600 VQLTS/SUPPLY VQLT / PSI0000076 VQLTS/SIPAMS DUCERTAINTY CHANNEL P3-P2 = .0016600 VQLTS/SUPPLY VQLT / PSI00000 PSID/DEG. A1 ESI SI ED ETO COMPONENTS (PSI) A1 ESI SI ED AD ESD SD PSI UNCERTAINTY IN TOTAL PRESSURE5 PERCENT UNCERTAINTY IN TOTAL PRESSURE5 PERCENT ED ED ETO COMPONENTS (PSI) A1 ESI SI ED ETO COMPONENTS (PSI) A1 ESI SI ED ETO COMPONENTS (PSI) A2 ESA SA C WOLTS/SUPPLY VQLT / PSI00441004410013000441004410043000441004410043000440004410043000440004400043000440004400043000440004400043000440004400043000440004400043000440		SUPPL	Y VOLTAGE					VOLTS				
ANGLE CALIBRATION CONSTANT - 52.80 PSID/DEG58080 PSID/DEG. A1 ES1 S1 COMPONENTS (PS1) 0037100074049680148400000000000000000001 ITAL PRESSURE - 18.57 PSIG09 PS1 UNCERTAINTY IN TOTAL PRESSURE5 PERCENT A1 ES1 S1 E00 A0 E50 SD 003710007404988014840000400110000220165900441 INTIC PRESSURE - 13.05 PSIG11 PS1 UNCERTAINTY IN STATIC PRESSURE8 PERCENT UNCERTAINTIES DUE TO COMPONENTS (PS1) AA ESA SA C MOTO001300013000186018601020	į	TRANS	DUCER SENS	>	P3-P2		VOL TS/SUPP	LY VOLT /	1		S/SUPPLY VOLT	LT / PSI
A1 ES1 00371000740498801484 .0000000000000000000100037 ITAL PRESSURE - 18.57 PSIG09 PS1 UNCERTAINTY IN TOTAL PRESSURE5 PERCENT UNCERTAINTIES DUE TO COMPONENTS (PS1) 003710007404988014840000400110000220165900441 IATIC PRESSURE - 13.05 PSIG+11 PS1 UNCERTAINTY IN STATIC PRESSURE8 PERCEN UNCERTAINTIES DUE TO COMPONENTS (PS1) A A A ESA SA C DO13001300013000186 .01020		ANGLE	CAL IBRATI	ON CONSTANT		:	1	1	₽ 6.			
A1 ES1 S1 E00 A0 ES0 SD 00371000740498801484 .0000000000000000000100001000371000740498801484 .000000000000000000015 PERCENT A1 ES1 S1 E00 AD ES0 SD 003710007404988014840000400110000220165900441 AA AA ESA SA C NOIZERTAINTIES DUE TO COMPONENTS (PSI) AA AA ESA SA C NOIZERTAINTIES OUE TO COMPONENTS (PSI) AA AA ESA SA C NOIZERTAINTIES OUE TO COMPONENTS (PSI)			UNCER	ES	E TO COMPONE	NTS (PSI)			;		:	1
00371000740498801484 .00000000000000300001 ITAL PRESSURE - 18.57 PSIG+09 PSI UNCERTAINTY IN TOTAL PRESSURE5 PERCENT UNCERTAINTIES DUE TO COMPONENTS (PSI) 003710007404988014840000400110000220165900441 ATIC PRESSURE - 13.05 PSIG+11 PSI UNCERTAINTY IN STATIC PRESSURE8 PERCEN UNCERTAINTIES DUE TO COMPONENTS (PSI) AA ESA SA C NOTE TO THE STATIC PRESSURE000690018600180	E01	14	E S 1		-	E 00	OV	ESD	ν.	0	CPT	CPS
AL PRESSURE = 18.57 PSIG+09 PSI UNCERTAINTY IN TOTAL PRESSURE = .5 PERCENT UNCERTAINTIES DUE TO COMPONENTS (PSI) AD ESD SD 00371 00074 04988 01484 00004 00110 00022 01659 00441 00371 00074 04988 01484 00004 00110 00022 01659 00441 00371 00022 01659 00488 00486 00186		00371	+2000	04988	01484	00000	00000	00 00 0	00003	100001	05509	00013
UNCERTAINTIES DUE TO COMPONENTS (PSI) A1 ESI S1	TOTAL	PRESSURE		PSI			TAINTY IN T	OTAL PRESSI	URE =		NT OF READING	U Z
A1 ES1 SD003710007404988014840000400110000220165900441 ATTC PRESSURE = 13.05 PSIG11 PSI UNCERTAINTY IN STATIC PRESSURE8 PERCE UNCERTAINTIES DUE TO COMPONENTS (PSI) A AA ESA SA C MOIS00130001300006900186 .01020			UNCER	ES		INTS (PSI)						
003710007404988014840000400110000220165900441 ATIC PRESSURE = 13.05 PSIG+11 PSI UNCERTAINTY IN STATIC PRESSURE = .8 PERCE UNCERTAINTIES DUE TO COMPONENTS (PSI) A A ESA SA C DOI 300130001300006900186 .01020	103		ES1			E00	QV	ES0	;	0:	CPT	CPS
C PRESSURE = 13.05 PSIG+11 PSI UNCERTAINTY IN STATIC PRESSURE = .8 UNCERTAINTIES DUE TO COMPONENTS (PSI) AA ESA SA C00130001300006900186 .01020	i	00371	00014	04988	01484	00004	00110	00022	01659	00441	05509	06610
UNCERTAINTIES DUE TO COMPONENTS (PSI) AA ESA SA C 00130001300006900186 .01020	STATIC	C PRESSURE		05 PSIG+-	1			STATIC PRE	S SURE =		CENT OF READING	DING
00130001300006900186 .01020			UNCER	TAINTIES DU	E TO COMPONE	INTS (PSI)	•				i	
00130001300006900186 .01020	E04	44		ESA	SA	ပ						
	.00013	00130			00186	.01020		i			! !	
93 DEGREES +01068 DEG. UNCERTAINTY IN ANGLE - 1.2 PERCENT	ANGL E		.93 DEGRE	1	1068 DEG.	UNCERTAI	NTY IN ANGL	•	1.2 PERCEI	70	ن د	
Flaure B-2 (Cont'd)				*		:	iqure B-2 (Col	nt'd)			•	

.02000 VOLTS/VOLT

AMPLIFIER GAIN CHANNEL PI = 100.00000 VOLTS/VOLT +-

ESI UNCERTAINTIES DUE TO COMPONENTS (PSI) ESI ESI ESI ENO 000810498801617000050011600023016590046500 000810498801617000050011600023016590046500 000810498801617000050011600023016590046500 000810498801617001160011600116000023016590046500 ESA SA C 001480006900212 .01166 Figure B-2 (Cont'd) Figure B-2 (Cont'd)	E01 .00016	SUPPRINCE SUPPRI	TY VOLER IFIER Y VOL PRES CALI	SENSITIVITY CHANN TAGE CHANNEL P1-P2 GAIN CHANNEL P1-P2 SENSITIVITY CHANN SENSITIVITY CHANN SURE COEFFICIENT SENSITIVITY CHANN SURE COEFFICIENT SENSITIVITY CHANN BRATION CONSTANT ON CONSTANT SINCERTAINTIES DUE SINCERTAINTIES DUE SINCERTAINTIES DUE SINCERTAINTIES DUE	12.0 (EL P1 1 = 10 1 = 10	2.60000 VOLTS + 2.60000 VOLTS + 2.60000 VOLTS + 2.00000 VOLTS + -P2 = .0004177 99800 +00 .90000 +00 .08000 VOLTS + -P2 = .0016600 52.80 PSID/DEG. MPONENTS (PSI) EQD 17 .00000	000 VOLTS000048 VOLTS 000 VOLTS0000208 VOLTS 000 VOLTS0000208 VOLTS 000 VOLTS0000208 VOLTS 000 VOLTS0000208 VOLTS 000 VOLTS0000112 VOLTS 000 VOLTS01080 000 VOLTS01080 VOLTS 000 VOLTS01680 VOLTS 000 VOLTS00000100	0000208 VD. VOLTS . 0000208 VD. CTS / SUPPLY VOLTS . 000048 VD. CTS / SUPPLY V CT	.00048 VOLTS .TS/SUPPLY VOLT / PS10000208 VOLTS DLT02000 VOLTS/ VOLTS/SUPPLY VOLT / PS1 VOLTS/SUPPLY VOLT / PS1 VOLTS/SUPPLY VOLT / PS1 VOLTS/SUPPLY VOLT / PS1 VOLTS/SUPPLY VOLT / PS158080 PS1D/DEG0000000000	.00 .0000	vor.	08 VOLTS/SUPPLY VOLT / 08 VOLTS/SUPPLY VOLT 00000105818	LT / PS1 LT / PS1 CPS00014
A1 ES1 S1 CPT 00404000810498801617000050011600023016590046505818 TATIC PRESSURE = 14.40 PSIG+11 PS1 UNCERTAINTY IN STATIC PRESSURE = .8 PERCENT OF READING DA AA ESA SA C 0015001480014800212 .01166 NGLE = 1.06 DEGREES +01218 DEG. UNCERTAINTY IN ANGLE = 1.1 PERCENT OF READING Figure 8-2 (Cont'd)	101	TOTAL PRESSURE		3 PSIG+- TAINTIES DU	.09 F	PSI UP	NCERTAINT	IN TO	AL PRESSU	RE .	.4 PER	PERCENT OF READING	5
00404000810498801617000050011600023016590046505818 TATIC PRESSURE - 14.40 PSIG+11 PSI UNCERTAINTY IN STATIC PRESSURE8 PERCENT OF READING UNCERTAINTIES DUE TO COMPONENTS (PSI) DA AA ESA SA C 0015001480001480006900212 .01166 Figure 8-2 (Cont'd) - 1.1 PERCENT OF READING	103	Al	ESI		11	E 00	:	01	ESD	:	08	CPT	CP S
C PRESSURE = 14.40 PSIG+11 PSI UNCERTAINTY IN STATIC PRESSURE = .8 PERCENT OF UNCERTAINTIES DUE TO COMPONENTS (PSI) AA ESA SA C 00148000480006900212 .01166 - 1.06 DEGREES +01218 DEG. UNCERTAINTY IN ANGLE = 1.1 PERCENT OF READING FIGURE B-2 (Cont'd)	.00016	-00000-	0000	04988	01617	0000		:	. 00023	01659	00465		06982
AA ESA SA C00148001480006900212 .011661.00 DEGREES +01218 DEG. UNCERTAINTY IN ANGLE = 1.1 PERCENT OF	STAT	IC PRESSUR!	=	40 PSIG+-	•11 •11	PSI REPER	INCERTAIN		ATIC PRES	SURE .	;	6	DING
* 1.06 DEGREES +01218 DEG. UNCERTAINTY IN ANGLE = 1.1 PERCENT OF Figure 8-2 (Cont'd)	EBA0001	:	•	SA00	SA 00212	C C					! ;		
	ANGL		1.06 DE GREI			UNCER	RTAINTY II	W ANGLE				9	

.02000 VOLTS/VOLT

AMPLIFIER GAIN CHANNEL PI . 100.00000 VOLTS/VOLT .-

TRANSDUCER SENSITIVITY CHANNEL P10001233 VOLTS/SUPPLY VOLT / PS1 + .0000002 VOLTS/SUPPLY VOLTS DUTPLY VOLTAGE CHANNEL P1-P2 - 100:00000 VOLTS + .000024 VOLTS SUPPLY VOLTAGE CHANNEL P1-P2 - 100:00000 VOLTS + .000048 VOLTS TRANSDUCER SENSITIVITY CHANNEL P1-P2000137 VOLTS + .000048 VOLTS TRANSDUCER SENSITIVITY CHANNEL P1-P2000017 VOLTS + .0000126 VOLTS TOTAL PRESSURE COEFFICIENT90000 VOLTS + .0000126 VOLTS TOTAL PRESSURE COEFFICIENT90000 VOLTS + .0000126 VOLTS TOTAL PRESSURE COEFFICIENT90000 VOLTS + .00000126 VOLTS TOTAL PRESSURE COEFFICIENT90000 VOLTS + .00000 VOLTS + .000000 VOLTS TRANSDUCER SENSITIVITY CHANNEL P3-P20016400 VOLTS/SUPPLY VOLT / PS1 + .00000000 VOLTS/SUPPLY VOLT / PS1 + .000000000000 VOLTS/SUPPLY VOLT / PS1 + .00000000000000000000000000000000000										
0UTPUT VOLTAGE CHANNEL P1-P2 - 100:0000 VOLTS0000240 VOLTS SUMPLY VOLTAGE CHANNEL P1-P2 - 100:00000 VOLTS/VOLT000009 VOLTS/VOLT SUMPLY VOLTAGE CHANNEL P1-P200004177 VOLTS/SUMPLY VOLT / PS100000008 VOLTS/SUMPLY VOLT TANKSDUCER SENSITIVITY CHANNEL P1-P200004177 VOLTS/SUMPLY VOLTS TANKSDUCER SENSITIVITY CHANNEL P1-P20000417 VOLTS001600 VOLTS/SUMPLY VOLTS AMPLIFIER CAIN CHANNEL P3-P2000000 VOLTS/SUMPLY VOLTS001600 VOLTS/SUMPLY VOLTS TANKSDUCER SENSITIVITY CHANNEL P3-P2000000 VOLTS/SUMPLY VOLTS TANKSDUCER SENSITIVITY CHANNEL P3-P2000000 VOLTS/SUMPLY VOLTS AMPLIFIER CAIN CHANNEL P3-P200000 VOLTS/SUMPLY VOLTS TANKSDUCER SENSITIVITY CHANNEL P3-P20016000 VOLTS/SUMPLY VOLTS TANKSDUCER SENSITIVITY CHANNEL P3-P20016000 VOLTS/SUMPLY VOLTS AMPLIFIER CAIN CHANNEL P3-P200000 VOLTS/SUMPLY VOLTS TANKSDUCER SENSITIVITY CHANNEL P3-P20016000 VOLTS/SUMPLY VOLTS AMPLIFIER CAIN CHANNEL P3-P200000 VOLTS/SUMPLY VOLTS TANKSDUCER SENSITIVITY CHANNEL P3-P2000000 VOLTS/SUMPLY VOLTS AMPLIFIER CAIN THIES DUE TO COMPONENTS (P3 1) AMPLIFIER CAIN CHANNEL P3-P200	TRANSDUCER SENSIT		•		TS/SUPPLY	VOLT / PSI				
SUPPLY VOLTAGE CHANNEL P1-P2 - 12,00000 VOLTS00048 VOLTS	OUTPUT VOLTAGE CHI			VOLTS						
SUPPLY VOLIAGE CHANNEL P1-P2 - 12.00000 VOLIS00048 VOLTS TRANSDUCER SENSITIVITY CHANNEL P1-P20004177 VOLTS/SUPPLY VOLT / PSI +0000000 VOLTS/SUPPLY VOLT / PSI +0000000 VOLTS/SUPPLY VOLT / PSI +0000000 VOLTS/SUPPLY VOLT / PSI +00000000 VOLTS/SUPPLY VOLT / PSI +0000000 VOLTS/SUPPLY VOLT / PSI +0000000 VOLTS/VOLT /0000000 VOLTS/VOLT /0000000 VOLTS/VOLT /000000 VOLTS/VOLT /000000 VOLTS/VOLT /000000 VOLTS/SUPPLY VOLT / PSI +0000000 VOLTS/SUPPLY VOLT / PSI +0000000 VOLTS/SUPPLY VOLT / PSI +0000000 VOLTS/SUPPLY VOLT /000000 VOLTS/SUPPLY VOLT / PSI +000000 VOLTS/SUPPLY VOLT /000000 VOLTS/SUPPLY VOLT /00	AMPLIFIER GAIN CH		•	1	1		S/VOLT	:		
TOTAL PRESSURE COEFFICIENT	SUPPLY VOLTAGE CH					VOLTS				
### PRESSURE COEFFICIENT	TRANSDUCER SENSIT		P1-P2 =	.0004177	VOL TS/SUPP	VOLT /	1			2LT / PSI
STATIC PRESSURE COEFFICIENT90000 + .01080 OUTPUT VOLTAGE CHANNEL P3-P209000 VOLTS + .0000126 VOLTS SUPPLY VOLTAGE CHANNEL P3-P209000 VOLTS / VOLT + .01680 VOLTS / VOLT SUPPLY VOLTAGE CHANNEL P3-P20910000 VOLTS / VOLT PSI + .0000076 VOLTS / VOLT AND RANSOUCER SENSITIVITY CHANNEL P3-P20016600 VOLTS / SUPPLY VOLT AND RANSOUCER SENSITIVITY CHANNEL P3-P20016600 VOLTS / SUPPLY VOLT AND RANSOUCER SENSITIVITY CHANNEL P3-P20016600 VOLTS / SUPPLY VOLT AND RESIDENTION CONSTANT S2.00 PSI D/DEG58080 PSI D/DEG. 00431000600486601724 .00000000000000030000106703 TATIC PRESSURE - 21.56 PSI C09 PSI UNCERTAINTY IN TOTAL PRESSURE4 PERCENT OF READING 004310006004868017240000500134000270165906703 TATIC PRESSURE - 13.86 PSI C13 PSI UNCERTAINTY IN STATIC PRESSURE9 PERCENT OF READING UNCERTAINTIES DUE TO COMPONENTS (PSI) AA A ESA SA C C C C C C C C C C C C C C C C C	TOTAL PRESSURE COL		1		96		•			
OUTPUT VOLTACE CHANNEL P3-P209000 VOLTS +010800 VOLTS/VOLT	STATIC PRESSURE CI	DEFFICIENT	000006		080					
SUPPLY VOLTAGE CHANNEL P3-P2 = 200,00000 VOLTS/SUPPLY VOLTS SUPPLY VOLTAGE CHANNEL P3-P2 = 12,00000 VOLTS/SUPPLY VOLTS TRANSDUCER SENSITIVITY CHANNEL P3-P2 = .0016600 VOLTS/SUPPLY VOLTS TRANSDUCER SENSITIVITY CHANNEL P3-P2 = .0016600 VOLTS/SUPPLY VOLTS ANGLE CALIBRATION CONSTANT = .52,80 PSID/DEG.	DUTPUT VOLTAGE CHI									
SUPPLY VOLTAGE CHANNEL P3-P2 - 12.00000 VOLTS/SUPPLY VOLTS TRANSDUCER SENSITIVITY CHANNEL P3-P20016-600 VOLTS/SUPPLY VOLT / PSI +0000076 VOLTS/SUPPLY VOLT ANGLE CALIBRATION CONSTANT - 52.80 PSID/DEG, +58080 PSID/DEG, UNCERTAINTIES DUE TO COMPONENTS (PSI) A1 ES1 S1 E0D A0 ESD CPT 00431000660498801724 .0000000000000000000106703 TATIC PRESSURE - 21.56 PSIG+09 PSI UNCERTAINTY IN TOTAL PRESSURE4 PERCENT OF READING UNCERTAINTIES DUE TO COMPONENTS (PSI) OA AA ESA SA C OOLT00167001670016800239 .01312 MGLE - 1.19 DEGREES +01368 DEG. UNCERTAINTY IN ANGLE - 1.1 PERCENT OF READING	AMPLIFIER GAIN CH		•	1	!		S/VOLT	1		
ANGLE CALIBRATION CONSTANT - 52.80 PSID/DEG. +58080 PSID/DEG. ANGLE CALIBRATION CONSTANT - 52.80 PSID/DEG. +58080 PSID/DEG. UNGERTAINTIES DUE TO COMPONENTS (PSI) 00431000860498801724 .0000000000000030000106703 OAL ESSURE - 21.56 PSIG09 PSI UNGERTAINTY IN TOTAL PRESSURE4 PERCENT OF READING 00431000860498801724000050013400027016590053606703 TATIC PRESSURE - 14.65 PSIG13 PSI UNGERTAINTY IN STATIC PRESSURE9 PERCENT OF READING UNGERTAINTIES DUE TO COMPONENTS (PSI) OA AA ESA SA C OOLT001670016700239 .01312	SUPPLY VOLTAGE CHI		•	VOLTS +-		VOLTS	•	!	:	
ANCER CALIBRATION CONSTANT - 52.80 PSID/DEG58080 PSID/DEG. A1 ES1 S1 COMPONENTS (PS1) 00431000860498801724 .0000000000000000000106703 OTAL PRESSURE - 21.56 PSIG09 PS1 UNCERTAINTY IN TOTAL PRESSURE4 PERCENT OF READING UNCERTAINTIES DUE TO COMPONENTS (PS1) 004310008604988017240000500134000270165906703 TATIC PRESSURE - 14.85 PSIG13 PS1 UNCERTAINTY IN STATIC PRESSURE9 PERCENT OF READING UNCERTAINTIES DUE TO COMPONENTS (PS1) OA AA ESA SA C OO1700167001670006900239 .01312	TRANSDUCER SENSIT		P3-P2 =	.0016600	VOLTS/SUPP	LY VOLT / P	1		VOLTS/SUPPLY VO	LT / PSI
A1 ES1 51 COMPONENTS (PSI) -,00431 -,00066 -,04986 -,01724 ,00000 -,00000 -,00003 -,00001 -,06703 OTAL PRESSURE - 21.56 PSIG+- ,09 PSI UNCERTAINTY IN TOTAL PRESSURE - ,4 PERCENT OF READING UNCERTAINTIES DUE TO COMPONENTS (PSI) -,00431 -,00066 -,04988 -,01724 -,00005 -,00134 -,00027 -,01659 -,00536 -,06703 TATIC PRESSURE - 14.85 PSIG+- ,13 PSI UNCERTAINTY IN STATIC PRESSURE - ,9 PERCENT OF READING UNCERTAINTIES DUE TO COMPONENTS (PSI) OA AA ESA SA C OOL7 -,00167 -,00167 -,00369 -,00239 ,01312	ANGLE CALIBRATION	CONSTANT .	1	PS10/0EC.		80 PSID/DE	.9			
STATE F. STATE STATE	UNCERTA	OUE	10	S (PSI)	:)		
00431000860498801724 .0000000000000030000106703 OTAL PRESSURE = 21.56 PSIG+09 PSI UNCERTAINTY IN TOTAL PRESSURE4 PERCENT OF READING UNCERTAINTIES DUE TO COMPONENTS (PSI) 004310008604988017240000500134000270165906503 TATIC PRESSURE = 14.85 PSIG+13 PSI UNCERTAINTY IN STATIC PRESSURE9 PERCENT OF READING OA AA ESA SA C OOLT00167001670016900239 .01312 MGLE = 1.19 DECREES +01368 DEG. UNCERTAINTY IN ANGLE - 1.1 PERCENT OF READING		15		€00	Φ	ESD		SD	CPT	CP S
OTAL PRESSURE - 21.56 PSIC+09 PSI UNCERTAINTY IN TOTAL PRESSURE4 PERCENT OF READING UNCERTAINTIES DUE TO COMPONENTS (PSI)	0043100086	80	.01724	• 00000	00000	00000	00003	- 0000	i	00016
A1 ES1 SDE TO COMPONENTS (PSI) A1 ES1 S1 CPT 004310008604988017240000500134000270165906703 TATIC PRESSURE = 14.85 PSIG+13 PSI UNCERTAINTY IN STATIC PRESSURE9 PERCENT OF READING UNCERTAINTIES DUE TO COMPONENTS (PSI) AA ESA SA C 0017001670016700239 .01312 NGLE = 1.19 DEGREES +01368 DEG. UNCERTAINTY IN ANGLE = 1.1 PERCENT OF READING	II	PSIG•		UNCERT		OTAL PRESSU	RE .		9	9
A1 E51 51 CPT004310008604988017240000500134000270165906703 TATIC PRESSURE = 14.85 PSIG+13 PSI UNCERTAINTY IN STATIC PRESSURE = .9 PERCENT OF READING UNCERTAINTIES DUE TO COMPONENTS (PSI) OA AA ESA SA C DO1700167001670006900239 .01312 NGLE = 1.19 DEGREES +01368 DEG. UNCERTAINTY IN ANGLE = 1.1 PERCENT OF READING	UNCERTAI	₽.		S (PSI)						
00431000860496801724000050013400027016590053606703 TATIC PRESSURE = 14.85 PSIG13 PSI UNCERTAINTY IN STATIC PRESSURE = .9 PERCENT OF READING UNCERTAINTIES DUE TO COMPONENTS (PSI) OA AA ESA SA C 0017001670006900239 .01312 NGLE = 1.19 DEGREES01368 DEG. UNCERTAINTY IN ANGLE = 1.1 PERCENT OF READING		į		E 00	QV	E S 0		SD	CPT	CPS
C PRESSURE = 14.85 PSIG+13 PSI UNCERTAINTY IN STATIC PRESSURE = .9 UNCERTAINTIES DUE TO COMPONENTS (PSI) AA ESA SA C 001670016700239 .01312 = 1.19 DEGREES +01368 DEG. UNCERTAINTY IN ANGLE = 1.1 PERCENT OF REA	0043100086	04968		•00005	00134	00027	01659			0804
AA ESA SA C00167001670006900239 .01312 - 1.19 DEGREES +01368 DEG. UNCERTAINTY IN ANGLE - 1.1 PERCENT OF		PSIG	1	i !	1	STATIC PRES	SURE =	6.	PERCENT OF REA	DING
00167001670006900239 .013121.19 DEGREES +01368 DEG. UNCERTAINTY IN ANGLE - 1.1 PERCENT OF	UNCERTA	DUE	TO COMPONENT	S (PSI)	} 1				i	
00167001670006900239 .01312 - 1.19 DEGREES01368 DEG. UNCERTAINTY IN ANGLE - 1.1 PERCENT OF	44	4	S.A.	U						
- 1.19 DEGREES01368 DEG. UNCERTAINTY IN ANGLE - 1.1 PERCENT OF	00167	69000*-	1	01312		: :	!			
	1.19	1		UNCERTAIN	ITY IN ANGL	•			10 ING	
10.10011 /-X 041014				-	14000					

ی				100 4 TAL AL			1		
•	:	i	;		.01458			00186	00186
•	. :	i			ن ن	S.A.	;	ES	VV
					TS (PSI)	TO COMPONEN		UNCERTAI	· i
CENT OF REA	1.0 PER	SSURE =	STATIC PRE	TAINTY IN		•15	P S I G+-	15.74	STATIC PRESSURE
08473	00678	01659	00034	00169	- 00000		04988	l i	00484
CPT		•	ESO	QV	E G0		\$1	E51	41
!					TS (PSI)	TO COMPONEN	TES DUE	UNCERTAL	
NT OF READI	.5 PERCE	URE =	TOTAL PRESS	AINTY IN		. II PSI	-+5184	24.23	TOTAL PRESSURE *
08473	00001	00003	00000	00000	00000	01937	.04988	160000	00484
CPT	0.5	!	ESD	OV	E00	1	2.2	ES1	14
:	!		i !		TS (PST)	TO COMPONEN	165	UNCERTAI	!
		E 6.		í	P \$10/0EG.	52.80	CONSTANT -	ALIBRATION	ANGLE (
S/SUPPLY VO	300076 VOLT	;1	PLY VOLT /	VOLTS/SUP	.0016600	EL P3-P2 =		JCER SENSITI	TRANSD
			0 VOLTS				INNEL P3-P2	VOLTAGE CHA	SUPPLY
1		TS/VOLT	ļ	!		1 .		IER GAIN CHA	AMPLIF
			O VOLTS			ļ		VOLTAGE CHI	OUTPUT
1		!		080	1	00006.	EFFICIENT	PRESSURE CO	STATIC
			1	96	• • • • • • • • • • • • • • • • • • •	. 99800	,	RESSURE COE	TOTAL
		1	`	VOLTS/SUP	.0004177	EL P1-P2 =	_	JCER SENSITI	TRANSD
			8 VOLTS			•		VOLTAGE CHI	SUPPLY
		13/4051				£	INNEL PI-PZ	ER GAIN CHI	
		1 1077 34	02000 VO						31 1011
	S/SUPPLY VOL CPT 08473 CPT 08473 CENT OF READIN	000006 VOLTS/SUPPLY VOLT / 000076 VOLTS/SUPPLY VOLT /0000108473 5 PERCENT OF READING0067808473 1.0 PERCENT OF READING	0000008 v0000076 v0000030000	VOLTS VOLTS WOLTS W	VOLTS YOLTS VOLTS VO	\$\forall \text{S.YOLT} \cdot \times \text{.02000 VOLTS/VOLT} \\ \$\forall \text{.00048 VOLTS} \\ \$\forall \text{.00048 VOLTS} \\ \$\forall \text{.000998} \\ \$\forall \text{.01080} \\ \$\forall \text{.0000140 VOLTS} \\ \$\forall \text{.0000140 VOLTS} \\ \$\forall \text{.01080} \\ \$\forall \text{.00000 VOLTS} \\ \$\forall \text{.00000 VOLTS} \\ \$\forall \text{.00000} \\ \$\forall \text{.000034} \\ \$\forall \text{.000034} \\ \$\forall \text{.00034} \\ \$\forall \text{.00059} \\ \$\forall \text{.00059} \\ \$\forall \text{.00034} \\ \$\forall \text{.00059} \\ \$\forall	100.00000 VQLTS/VQLT	100.00000 VQLTS0.0004 VQLTS VQLTS0.000408 VQLTS0004177 VQLTS/SUPPLY VQLT / PSI0000008 V9990001080	VOLTAGE CHANNEL PL-P2 - 12.00000 VOLTS

A1 A1 A1000000000 O0A TATIC PRES		TRANS	TRANSDUCER SENSITIVITY		CHANNEL	٦ •	.0001253	VOL TS / SL	JPPLY V(VOLTS/SUPPLY VOLT / PSI	7000000* -+		1051301	VULISASUPPLY VOLI /	15.
SUPPLY VOLTAGE CHANNEL P1-P2 - 100.00000 VOLTS		OUTPU	T VOLTAGE					1		VOL. T.S					
SUPPLY VOLTAGE CHANNEL P1-P2 = 12.00000 VOLTS +000408 VOLTS TRANSDUCER SENSITIVITY CHANNEL P1-P2 = .0004177 VOLTS/SUPPLY VOLT / PS1 +0000008 VOLTS/SUPPLY VOLT 10714 PRESSURE COEFFICIENT = .99800 +01080 .00154 VOLTS 2017FUT VOLTAGE CHANNEL P3-P2 = .11000 VOLTS0000154 VOLTS 3017FUT VOLTAGE CHANNEL P3-P2 = .11000 VOLTS01080 VOLTS/VOLT ANTALE FIRST VOLTAGE CHANNEL P3-P2 = .11000 VOLTS01080 VOLTS/VOLT ANTALE CALIBRATION CONSTANT = .52.00000 VOLTS/VOLT .28000 VOLTS/VOLT ANTALE CALIBRATION CONSTANT = .52.00000 VOLTS/VOLT .28000 VOLTS/VOLT ANTALE CALIBRATION CONSTANT = .52.00000 VOLTS58000 VOLTS/VOLT ANTALE CALIBRATION CONSTANT = .52.00000 VOLTS/VOLT ANTALE CALIBRATION CONSTANT .52.00 PSID/DEG58000 VOLTS/VOLT ANTALE CALIBRATION CONSTANT .52.00 PSID/DEG58000 VOLTS/VOLT ANTALE CALIBRATION CONSTANT .52.00 PSID/DEG58000 VOLTS/VOLT ANTALE CALIBRATION CONSTANT .52.00 VOLTS/VOLT ANTALE CALIBRATION CONSTANT .52.0000 VOLTS/VOLT ANTALE CALIBRATION CONSTANT .52.00000 VOLTS/VOLT ANTALE CALIBRATION CONSTANT .52.00000 VOLTS/VOLT ANTALE CALIBRATION CONSTANT .52.00000 VOLTS/VOLT ANTA		AMPLI	FIER GAIN	1	ł.	100.000	i			000 VOL 1	TS/VOLT	!	-	!	
TRANSDUCER SENSITIVITY CHANNEL P1-P20004177 YOLTS/SUPPLY YOLT / PSI +0000008 YOLTS/SUPPLY YOLT TOTAL PRESSURE COEFFICIENT99900 +00999 STATIC PRESSURE COEFFICIENT9990000999 STATIC PRESSURE COEFFICIENT9990000999 STATIC PRESSURE COEFFICIENT999000090154 YOLTS AMPLETER CAIN CHANNEL P3-P211000 YOLTS0000154 YOLTS TRANSDUCER SENSITIVITY CHANNEL P3-P20010000 YOLTS/TOLT20000 YOLTS/YOLT TRANSDUCER SENSITIVITY CHANNEL P3-P2001000 YOLTS/TOLT20000 YOLTS/YOLT AMELE CALIBRATION CONSTANT	i I	SUPPL	Y VOLTAGE						8 000 .	VOL.TS					
TOTAL PRESSURE COEFFICIENT		TRANS	DUCER SENS		HANNEL	P1-P2		7 VOLT!	S/SUPPL1		1	1000000		SUPPLY VOL	`
STATIC PRESSURE COEFFICIENT		TOTAL	PRESSURE	COEFFICIE	N.	.99800	1	86600							
AMPLIFIER CAIN CHANNEL P3-P2		STĀTI	C PRESSURE	COEFFICE	ENT =	9000	1	.01080		*		!	: :		
ANDLIFIER CAIN CHANNEL P3-P2 = 200.00000 VOLTS/FULT		OUTPU	T VOLTAGE							VOL.75				ı	
SUPPLY VOLTAGE CHANNEL P3-P2 - 12.00000 VOLTS01880 VOLTS TRANSOUCER SENSITIVITY CHANNEL P3-P20018600 VOLTS/SUPPLY VOLT / PSI0000076 VOLTS/SUPPLY VOLT ANGLE CALIBRATION CONSTANT - 52.80 PSID/DEG58080 PSID/DEG. 005370010704966021500000000000000030000209800 0053700107049660215000000000000000300		AMPLI	FIER GAIN	1	,		1	/VOLT +	2	ļ	T S / VOL T				
ANGLE CALIBRATION CONSTANT = 52.00 PSID/DEG. +58080 PSID/DEG. ANGLE CALIBRATION CONSTANT = 52.00 PSID/DEG. +58080 PSID/DEG. 00537001070498802150 .00	1	SUPPL	Y VOLTAGE		3-62		DO VOLTS		.01680	VOLTS					
ANGLE CALIBRATION CONSTANT - 52.80 PSID/DEG58080 PSID/DEG. JUNCERTAINTIES DUE TO COMPONENTS (PSI) LO0537001070498802150 .000000000000000000030000209800 LO0537001070498802150000080019600039016590078409800 TATIC PRESSURE - 17.07 PSIG+17 PSI UNCERTAINTY IN STATIC PRESSURE0078409800 TATIC PRESSURE - 17.07 PSIG+17 PSI UNCERTAINTY IN STATIC PRESSURE0078409800 TATIC PRESSURE - 17.07 PSIG+17 PSI UNCERTAINTY IN STATIC PRESSURE0078409800 TATIC PRESSURE0020400242 .0160400292 .01604002040069 DEG. UNCERTAINTY IN ANGLE - 1.1 PERCENT OF READING		TRANS	DUCÉR SENS		HÄNNEL	P3-P2			S/SUPPL	r VOLT / 1		200000	6 VOLTS	/SUPPLY VOL	•
A1 ES1 SI CPT 00537001070498802150 .00		ANGLE	CAL 18RAT	ION CONSTA	- 7	52.80		1.00	.5808	0 PS10/D	EG.				; ;
A1 ES1 S1 CPT 00537001070498802150 .00019000190		; ;	UNCE		DUE TI	O COMPONE	NTS (PSI						-		1
00537001070498802150 .0000000000000000000209800 DIAL PRESSURE - 26.89 PSIG12 PSI UNCERTAINTY IN TOTAL PRESSURE5 PERCENT OF READING A1 ES1 S1	£01	11	E 5 1		. 15		£ 00	-	Φ	ESD		SO		CPT	CP S
DTAL PRESSURE - 26.89 PSIGO12 PSI UNCERTAINTY IN TOTAL PRESSURE5 PERCENT OF READING UNCERTAINTIES DUE TO COMPONENTS (PSI) 00537001070498802150000080019600039016590078409800 TATIC PRESSURE - 17.07 PSIGO17 PSI UNCERTAINTY IN STATIC PRESSURE - 1.0 PERCENT OF READING DA AA ESA SA C 0020002040002040006900292 .01604 MGIF - 1.46 DEGREES01669 DEG. UNCERTAINTY IN ANGLE - 1.1 PERCENT OF READING		00537	00107	04988		.02150	00000	00		00000-	00003		20000	00860-	00054
UNCERTAINTIES DUE TO COMPONENTS (PSI) 00537001070498802150000080019600039016590078409800 TATIC PRESSURE - 17.07 PSIG+17 PSI UNCERTAINTY IN STATIC PRESSURE - 1.0 PERCENT OF READING DA AA ESA SA C 0020002040002040009901604 MGIF - 1.1 PERCENT OF READING	TOTAL	PRESSURE	1	P 5 I G •			:	ERTAINT	Y IN TO	TAL PRESS		.		T OF READI	۱ ن ۲
A1 ES1 00537001070498802150000080019600039016590078409800 TATIC PRESSURE - 17.07 PSIG17 PSI UNCERTAINTY IN STATIC PRESSURE - 1.0 PERCENT OF READING DA AA ESA SA C 002000204002040006900292 .01604 MGIF - 1.46 DEGREES01669 DEG. UNCERTAINTY IN ANGLE - 1.1 PERCENT OF READING			UNCE	1	DUE T	O COMPONE	NTS (PSI	_							
00537001070498802150000080019600039016590078409800 TATIC PRESSURE = 17.07 PSIG17 PSI UNCERTAINTY IN STATIC PRESSURE = 1.0 PERCENT OF READING DA AA ESA SA C 002000204002040006900292 .01604 MGIF = 1.46 DEGREES01669 DEG. UNCERTAINTY IN ANGLE = 1.1 PERCENT OF READING	E01		ESI	1	5.1		E00		ΦD	ESO	1	20		CPT	CPS
C PRESSURE = 17.07 PSIG17 PSI UNCERTAINTY IN STATIC PRESSURE = 1.00 UNCERTAINTIES DUE TO COMPONENTS (PSI) AA ESA SA C00204002040006900292 .01604046 DEGREES01669 DEG. UNCERTAINTY IN ANGLE = 1.1 PERCENT OF RE	12000	00537	0100	04988		.02150	00008	- 00		- 00039	01659	·	00784	00860	11761
UNCERTAINTIES DUE TO COMPONENTS (PSI) 00204002040006900292 .01604 1.46 DEGREES01669 DEG. UNCERTAINTY IN ANGLE - 1.1 PERCENT OF	STATI	C PRESSURE	•	.07 PSIG+	•	[CERTAIN		TATIC PRE	SSURE =	7	ŧ	ENT OF REA	O I NG
00204002040006900292 .01604 1.46 DEGREES +01669 DEG. UNCERTAINTY IN ANGLE - 1.1 PERCENT OF			UNCE	١	DUE T	O COMPONE	NTS (PSI		!		:		1	!	
00204002040006900292 .01604 00204002040069 DEG. UNCERTAINTY IN ANGLE - 1.1 PERCENT OF	EOA	¥		ESA		SA	U								:
- 1.46 DEGREES +01669 DEG. UNCERTAINTY IN ANGLE - 1.1 PERCENT OF	0 2000	Ì	į	1		.00292	.01604	1			: :	! !			!
	ANGLE	· !	1.46 DEGR	ES +	.0166		UNCERT	AINTY I	N ANGLE			ENT OF			

-- 13353 -- 00027 .0000076 VOLTS/SUPPLY VOLT / PS1 .0000008 VOLTS/SUPPLY VOLT / PSI CPS 1.0 PERCENT OF READING .5 PERCENT OF READING -.11128 -. 11128 CPT 1.1 PERCENT OF READING -- 00005 -- 00890 ; 20 .19 PSI UNCERTAINTY IN STATIC PRESSURE .. 20 -.00003 -.01659 AMPLIFIER GAIN CHANNEL P3-P2 - 200.0000 VOLTS/VOLT +- .28000 VOLTS/VOLT TRANSDUCER SENSITIVITY CHANNEL P3-P2 = .0016600 VOLTS/SUPPLY VOLT / PS1 +-AMPLIFIER GAIN CHANNEL P1-P2 = 100.00000 VOLTS/VOLT +- .02000 VOLTS/VOLT UNCERTAINTY IN TOTAL PRESSURE -.58080 PSID/DEG. -.00000 -- 00045 12000 VOLTS +- .0000168 VOLTS .01680 VOLTS QUIPUT VOLTAGE CHANNEL PI-P2 . 5.00000 VOLTS +- .0000400 VOLTS .00048 VOLTS ESD .01819 DEG. UNCERTAINTY IN ANGLE .. -.00591 -.00118 -.04988 -.02362 -.00009 -.00223 -.00000 9 9 ANGLE CALIBRATION CONSTANT = 52.80 PSID/DEG. +-.01080 96600. SUPPLY VOLTAGE CHANNEL P3-P2 = 12.00000 VOLTS +-SUPPLY VOLTAGE CHANNEL PI-P2 = 12.00000 VOLTS +-00000 64210. UNCERTAINTIES DUE TO COMPONENTS (PSI) UNCERTAINTIES DUE TO COMPONENTS (PST) UNCERTAINTIES DUE TO COMPONENTS (PSI) ر ن E 00 -+ 00006. . TOTAL PRESSURE = 29.55 PSIG+ .13 PSI 00066. -.00223 -.00223 -.00069 -.00318 -.00118 -.04988 -.02362 DUTPUT VOLTAGE CHANNEL P3-P2 = ESA STATIC PRESSURE COEFFICIENT . TOTAL PRESSURE COEFFICIENT . STATIC PRESSURE = 18.40 PSIG+-21 1.59 DEGREES +-AA E \$ 1 -.00591 A1 E04 .00022

Social encommendations and the contract of a final contract of the contract of the contract of the contract of

Figure B-2 (Cont'd)

	TRANSDUCER SENSITIVI	TY CHANNEL P1 =	.0001253 VOLTS	VOLTS/SUPPLY VOLT / PSI	+0000002 VOLTS/SUPPLY VOLT	Y VOLT / PSI
	OUTPUT VOLTAGE CHANNEL	NEL P1-P2 - 5.28000	V0LTS +-	.0000422 VOLTS		
	AMPLIFIER GAIN CHANNEL	NEL P1-P2 - 100.00000	DO VOLTS/VOLT	02000 VOLT	VOLTS/VOLT	
	SUPPLY VOLTAGE CHANNEL	NEL P1-P2 - 12.00000	00 VOLTS +-	.00048 VOLTS		
	TRANSDUCER SENSITIVITY CHANNEL P1-P2 =	ITY CHANNEL PI-P2 =		.0004177 VOLTS/SUPPLY VOLT / PSI	*0000008	VOLTS/SUPPLY VOLT / PSI
	TOTAL PRESSURE COEFF	FICIENT99800	86600+			
	STATIC PRESSURE COEFFICIENT	FFICIENT = .90000	09010+ 0	:		
	OUTPUT VOLTAGE CHANNEL	NEL P3-P213000	VOLTS +-	.0000182 VOLTS		
	AMPLIFIER GAIN CHANNEL	P3-P2 =	200.00000 VOLTS/VOLT	+28000 VOLT	VOLTS/VOLT	
	SUPPLY VOLTAGE CHANNEL	NEL P3-P2 - 12.00000	00 VOLTS +-	.01680 VOLTS		
	TRANSDUCER SENSITIVITY CHANNEL	ITY CHANNEL P3-P2 =	.0016600	VOLTS/SUPPLY VOLT / PSI	51 +0000076 VOLTS/SUPPLY	IPPLY VOLT / PSI
	ANGLE CALIBRATION CONSTANT	DNSTANT - 52.80	PSID/DEG. +-	.58080 PSID/DEG.	•6	
1	UNCERTAINT	TIES DUE TO COMPONENTS (PSI)	NTS (PSI)			
£01	A1 E51	2.1	€ 00	AD ESO	OS	CPT CPS
.00005	00617001230	0498802469	00000	00000 00000	0000300005	1174700028
TOTAL	TOTAL PRESSURE - 30.88 PS	PSIG+14 PSI		UNCERTAINTY IN TOTAL PRESSURE	RE5 PERCENT OF	F READING
	UNCERTAINTIES	TIES DUE TO COMPONENTS (PSI	MTS (PSI)			
EOI	A1 ES1	5.1	E 0 0	A0 ES0	0\$	ČPT CPS
.00025	00617001230	0498802469	0 60000	0023500047	01659 00940	11747 14097
STATI	STATIC PRESSURE - 19.11 PSIG+	PSIG+ 20 PSI	SI UNCERTAINTY IN	INTY IN STATIC PRESSURE	SURE = 1.0 PERCENT OF READING	OF READING
	UNCERTAINTIES	TIES DUE TO COMPONENTS (PSI	UTS (PSI)			
EDA	AA ESA	SA	v			
+ 2000°	0024100241	0006900345	.01895			
:						
ANGL E	- 1.72 DEGREES +-	01970 DEG.	UNCERTAINTY IN ANGLE	•	1.1 PERCENT OF READING	
			Figure B-2 (Cont'd)	Cont'd)		1

STATIC PRESSURE = 20.18 PSIU+20 PSI UNCERTAINTY IN STATIC PRESSURE = 1.0 PERCENT OF READING UNCERTAINTIES DUE TO COMPONENTS (PSI) E0A AA ESA SA C .0002600260002600006900371 .02041	A1 ES1 S1 E00 AD ESD S0 CPT00644001290498802575000100024000048016590096112013 -	UNCERTAINTIES DUE TO COMPONENTS (PSI)	TOTAL PRESSURE - 32.21 PSIG+14 PSI UNCERTAINTY IN TOTAL PRESSURE4 PERCENT OF READING	0002600644001290498802575 .00000000000000000003000021201300029	EO1 A1 ES1 S1 EOD AD ESD SD CPT CPS	UNCERTAINTIES DUE TO COMPONENTS (PSI)	PSID/DEG. +58080 PSID/DEG.	SUPPLY VOLTAGE CHANNEL P3-P2 = 12.00000 VOLTS +01680 VOLTS TRANSDUCER SENSITIVITY CHANNEL P3-P2 = .0016600 VOLTS/SUPPLY VOLT / PSI +0000076 VOLTS/SUPPLY VOLT / PSI	DUTPUT VOLTAGE CHANNEL P3-P2 = .14000 VOLTS +0000196 VOLTS AMPLIFIER GAIN CHANNEL P3-P2 * 200.00000 VOLTS/VOLT +28000 VOLTS/VOLT	STATIC PRESSURE COEFFICIENT 90000 +01080	TOTAL PRESSURE COEFFICIENT9980000996	TRANSDUCER SENSITIVITY CHANNEL PI-P20004177 VOLTS/SUPPLY VOLT / PSI0000CGOB VOLTS/SUPPLY VOLT / PSI	.000CCC08 VOLTS/SUPPLY VOLT SD	FORESTURE CHANNEL PI-P2 -	# S
TOTAL PRESSURE COEFFICIENT	TRANSDUCER SENSITIVITY CHANNEL P1-P2 *0004177 VOLTS/SUPPLY VOLT / PSI +000CC08 VOLTS/SUPPLY VOLT / TOTAL PRESSURE COEFFICIENT *99800 +00998 STATIC PRESSURE COEFFICIENT * .99800 +01080 OUTPUT VOLTAGE CHANNEL P3-P2 * .200.00000 VOLTS +0000196 VOLTS AMPLIFIER GAIN CHANNEL P3-P2 * .200.00000 VOLTS +01080 VOLTS/VOLT SUPPLY VOLTAGE CHANNEL P3-P2 * .200.00000 VOLTS/SUPPLY VOLT / PSI +000C076 VOLTS/SUPPLY VOLT TRANSDUCER SENSITIVITY CHANNEL P3-P2 * .0016600 VOLTS/SUPPLY VOLT / PSI +000C076 VOLTS/SUPPLY VOLT ANCLE CALIBRATION CONSTANT * 52.80 PSID/DEG. +58080 PSID/DEG. UNCERTAINTIES DUE TO COMPONENTS (PSI) A1 ES1 S1 S2 SURE * .00000 *00	TRANSDUCER SENSITIVITY CHANNEL P1-P20004177 VGLTS/SUPPLY VGLT / PSI0000CGOB VGLTS/SUPPLY VGLT / PSI0000CGOB VGLTS/SUPPLY VGLT PSI0000CGOB VGLTS/SUPPLY VGLT PSI0000GG01080 GUTPULY VGLTACE CHANNEL P3-P214000 VGLTS01080 GUTPULY VGLTACE CHANNEL P3-P214000 VGLTS28000 VGLTS/VGLT28000 VGLTS/VGLT PSI000CGOP6 VGLTS/VGLT PSI PSI PSI000CGOP6 VGLTS/VGLT PSI	TOTAL PRESSURE COEFFICIENT9980000096 TOTAL PRESSURE COEFFICIENT9980000996 STATIC PRESSURE COEFFICIENT9980000996 STATIC PRESSURE COEFFICIENT9900001080 OUTPUT VOLTAGE CHANNEL P3-P214000 VOLTS0000196 VOLTS AMPLIFIER GAIN CHANNEL P3-P214000 VOLTS01680 VOLTS/VÖLT SUPPLY VOLTAGE CHANNEL P3-P212,00000 VOLTS/VÖLT01680 VOLTS TRANSDUCER SENSITIVITY CHANNEL P3-P20016600 VOLTS/SUPPLY VOLT / PS10000076 VOLTS/SUPPLY VOLT ANGLE CALIBRATION CONSTANT52,00 PSID/DEG58080 PSID/DEG. UNCERTAINTIES DUE TO COMPONENTS (PSI) A1 ES1 S1 COMPONENTS (PSI) 00644001290498802575 .00000000000000030000212013	TOTAL PRESSURE COEFFICIENT9980000996 STATIC PRESSURE COEFFICIENT9980000996 STATIC PRESSURE COEFFICIENT9980001080 GUTPUT VOLTAGE CHANNEL P3-P214000 VOLTS +0000196 VOLTS AMPLIFIER GAIN CHANNEL P3-P214000 VOLTS/VOLT +28000 VOLTS/VOLT SUPPLY VOLTAGE CHANNEL P3-P212.00000 VOLTS/VOLT +01680 VOLTS/VOLT TRANSDUCER SENSITIVITY CHANNEL P3-P20016600 VOLTS/SUPPLY VOLT / PSI +0000076 VOLTS/SUPPLY VOLT ANGLE CALIBRATION CONSTANT52.80 PSID/DEG. +58080 PSID/DEG. UNCERTAINTIES DUE TO COMPONENTS (PSI) A1 ES1 S1 COMPONENTS (PSI)	CHANNEL P1-P20004177 VOLTS/SUPPLY VOLT / PSI000CC008 VOLTS/SUPPLY VOLT FINT9980000998 SIENT9980001080 P3-P214000 VOLTS0000196 VOLTS P3-P214000 VOLTS28000 VOLTS/VÖLT P3-P2 - 12.00000 VOLTS01680 VOLTS CHANNEL P3-P20016600 VOLTS/SUPPLY VOLT / PSI000C076 VOLTS/SUPPLY VOLT ANT52.80 PSID/DEG58080 PSID/DEG.	CHANNEL P1-P20004177 VOLTS/SUPPLY VOLT / PSI000CC008 VOLTS/SUPPLY VOLT ENT9980000998 SIENT9000001080 P3-P214000 VOLTS0000196 VOLTS P3-P214000 VOLTS28000 VOLTS/VOLT P3-P2100000 VOLTS/VOLT28000 VOLTS/VOLT CHANNEL P3-P20016600 VOLTS/SUPPLY VOLT ANT - 52.80 PSID/DEG58080 PSID/DEG.	CHANNEL P1-P20004177 VOLTS/SUPPLY VOLT / PSI000CG08 VOLTS/SUPPLY VOLT ENT = .9980000998 IENT = .9980001080 P3-P2 = .14000 VOLTS0000196 VOLTS P3-P2 = .14000 VOLTS28000 VOLTS/VOLT P3-P2 = .200.00000 VOLTS01680 VOLTS P3-P2 = .12.00000 VOLTS01680 VOLTS CHANNEL P3-P2 = .0016600 VOLTS/SUPPLY VOLT / PSI0000076 VOLTS/SUPPLY VOLT	CHANNEL P1-P20004177 VOLTS/SUPPLY VOLT / PSI +000CG0B VOLTS/SUPPLY VOLT ENT9980000998 SIENT99000001080 P3-P214000 VOLTS +0000196 VOLTS P3-P2200.00000 VOLTS/VOLT +28000 VOLTS/VOLT	NNEL PI-P20004177 VOLTS/SUPPLY VOLT / PSI000CG08 VOLTS/SUPPLY VOLT9980000996 T9000001080	NNEL PI-P2 • .0004177 VOLTS/SUPPLY VOLT / PSI •000CGOB VOLTS/SUPPLY VOLT • .99800 •00996	TY CHANNEL PI-P20004177 VOLTS/SUPPLY VOLT / PSI000CGOB VOLTS/SUPPLY VOLT			P1-P2 = 12.00000 VOLTS +00048	
SUPPLY VOLTAGE CHANNEL P1-P20004177 VOLTS/SUPPLY VOLT / PS1 +0000CGG8 VOLTS/SUPPLY VOLT TOTAL PRESSURE COEFFICIENT9980000996 STATIC PRESSURE COEFFICIENT9980000996 STATIC PRESSURE COEFFICIENT9980000996 OUTPUT VOLTAGE CHANNEL P3-P214900 VOLTS01080 VOLTS / .0000196 VOLTS / .28000 VOLTS/VOLT SUPPLY VOLTAGE CHANNEL P3-P21240000 VOLTS01080 VOLTS / .0000076 VOLTS/VOLT SUPPLY VOLTAGE CHANNEL P3-P20016600 VOLTS/SUPPLY VOLT / PS1 +000C076 VOLTS/SUPPLY VOLT ANGLE CALIBRATION CONSTANT52.80 PS10705656080 PS107066. UNGERTAINTIES DUE TO COMPONENTS (PS1) A1 ES1 S1 PS1614 PS1 UNGERTAINTY IN TOTAL PRESSURE4 PERCENT OF READING UNCERTAINTIES DUE TO COMPONENTS (PS1) A1 ES1 S1 PS1614 PS1 UNGERTAINTY IN TOTAL PRESSURE4 PERCENT OF READING UNCERTAINTIES DUE TO COMPONENTS (PS1) A1 ES1 S1 PS1614 PS1 UNGERTAINTY IN TOTAL PRESSURE4 PERCENT OF READING UNCERTAINTIES DUE TO COMPONENTS (PS1) A1 ES1 S1 PS1614 PS1 UNGERTAINTY IN TOTAL PRESSURE4 PERCENT OF READING UNCERTAINTIES DUE TO COMPONENTS (PS1) A1 ES1 S1 PS1614 PS1 UNGERTAINTY IN TOTAL PRESSURE4 PERCENT OF READING UNCERTAINTIES DUE TO COMPONENTS (PS1) A1 ES1 S1 PS1614 PS1 UNGERTAINTY IN TOTAL PRESSURE4 PERCENT OF READING UNCERTAINTIES DUE TO COMPONENTS (PS1) A1 ES1 S1 PS1614 PS1 UNGERTAINTY IN TOTAL PSS UNG10000110000011000011000011000011000011000011000011000	SUPPLY VOLTAGE CHANNEL P1-P2 - 12.00000 VOLTS00048 VOLTS TRANSDUCER SENSITIVITY CHANNEL P1-P20004177 VOLTS/SUPPLY VOLT / PSI +0000C008 VOLTS/SUPPLY VOLT / PSI +0000C008 VOLTS/SUPPLY VOLT / PSI +0000C008 VOLTS/SUPPLY VOLT PESSURE COEFFICIENT99980001080 GUYPUT VOLTAGE CHANNEL P3-P214000 VOLTS010800 VOLTS/VOLT SUPPLY VOLT / PSI +000C076 VOLTS/SUPPLY	SUPPLY VOLTAGE CHANNEL P1-P2 - 12.00000 VOLTS00048 VOLTS TRANSDUCER SENSITIVITY CHANNEL P1-P20004177 VOLTS/SUPPLY VOLT / PS10000CC08 VOLTS/SUPPLY VOLT TOTAL PRESSURE COEFFICIENT9980001080 GUTPUT YOLTAGE CHANNEL P3-P214000 VOLTS0000196 VOLTS ANPLIFIER GAIN CHANNEL P3-P214000 VOLTS01680 VOLTS/VÖLT SUPPLY YOLTAGE CHANNEL P3-P20006000 VOLTS/VÜLT28000 VOLTS/VÖLT TRANSDUCER SENSITIVITY CHANNEL P3-P20016600 VOLTS/SUPPLY VOLT / PS1000C076 VOLTS/SUPPLY VOLT ANGLE CALIBRATION CONSTANT52.80 PS1D/DEG58080 PS1D/DEG. UNICERTAINTIES DUE TO COMPONENTS (PS1) A1 ES1 S1 ES0 PS1D/DEG000	SUPPLY VOLTAGE CHANNEL P1-P2 - 12.00000 VOLTS	SUPPLY VOLTAGE CHANNEL P1-P2 - 12.00000 VOLTS	PI-P2 = 12.00000 VOLTS00048 VOLTS CHANNEL PI-P20004177 VOLTS/SUPPLY VOLT / PSI000CGOB VOLTS/SUPPLY VOLT ENT = .9980000998 :IENT = .9900001080 P3-P2 = .14000 VOLTS0000196 VOLTS P3-P2 = .14000 VOLTS28000 VOLTS/VOLT P3-P2 = 12.00000 VOLTS01580 VOLTS CHANNEL P3-P20016600 VOLTS/SUPPLY VOLT / PSI000CO76 VOLTS/SUPPLY VOLT ANT = 52.80 PSID/DEG58080 PSID/DEG.	CHANNEL P1-P20004177 VOLTS/SUPPLY VOLT / PSI000CC008 VOLTS/SUPPLY VOLT ENT9980000998 :IENT9980001080 P3-P214000 VOLTS0000196 VOLTS P3-P214000 VOLTS28000 VOLTS/VOLT P3-P214000 VOLTS/VOLT28000 VOLTS/VOLT P3-P21500000 VOLTS/VOLT28000 VOLTS/VOLT ANT - 52.80 PSID/DEG58080 PSID/DEG.	CHANNEL P1-P20004177 VOLTS/SUPPLY VOLT / PSI000CG08 VOLTS/SUPPLY VOLT FENT = .9980000998 SIENT = .9980001080 P3-P2 = .14000 VOLTS +0000196 VOLTS P3-P2 = .14000 VOLTS +0000196 VOLTS/VOLT P3-P2 = 12.00000 VOLTS +01680 VOLTS CHANNEL P3-P20016600 VOLTS/SUPPLY VOLT CHANNEL P3-P20016000 VOLTS	P1-P2 = 12.00000 V0LTS +00048 V0LTS CHANNEL P1-P20004177 V0LTS/SUPPLY V0LT / PSI +0000CGOB V0LTS/SUPPLY V0LT ENT = .99800 +00998 :IENT = .99800 +01080 P3-P2 = .14000 V0LTS +0000196 V0LTS P3-P2 = .200.00000 V0LTS/V0LT +28000 V0LTS/V0LT	P2 = 12.00000 VOLTS +00048 VOLTS NNEL P1-P2 = .0004177 VOLTS/SUPPLY VOLT / PSI +000CCOB VOLTS/SUPPLY VOLT 9980000998 T = .90000 +01080	P2 = 12.00000 VOLTS +00048 VOLTS NNEL P1-P2 = .0004177 VOLTS/SUPPLY VOLT / PSI +000CCOB VOLTS/SUPPLY VOLT99800 +00998	P1-P2 = 12.00000 VOLTS +00048 VOLTS CHANNEL P1-P2 = .0004177 VOLTS/SUPPLY VOLT / PS! +000CGOB VOLTS/SUPPLY VOLT	P1-P2 = 12.00000 VOLTS +00048		P1-P2 = 100.00000 VOLTS/VOLT + G2000	
SUPPLY VOLTAGE CHANNEL P1-P2 - 12.00000 VOLTS00048 VOLTS SUPPLY VOLTAGE CHANNEL P1-P2 - 12.00000 VOLTS00048 VOLTS TRANSDUCER SENSITIVITY CHANNEL P1-P20004177 VOLTS/SUPPLY VOLT / PS1000CC08 VOLTS/SUPPLY VOLT TOTAL PRESSURE COEFFICIENT9980001080 OUTPUT YOLTAGE CHANNEL P3-P214000 VOLTS01080 OUTPUT YOLTAGE CHANNEL P3-P214000 VOLTS010800 VOLTS / VOLTS / VOLTS / VOLTS / VOLTS / VOLTAGE CHANNEL P3-P212.00000 VOLTS010800 VOLTS / VONTS / VOLTS / VONTS / VOLTS / VOLTS / VONTS / VOLTS / VOLTS / VOLTS / VOLTS / VONTS / VOLTS / V	SUPPLY VOLTAGE CHANNEL P1-P2 - 100.00000 VOLTS/VOLT	SUPPLY VOLTAGE CHANNEL P1-P2 - 12,00000 VOLTS/VOLT	AMPLIFIER GAIN CHANNEL P1-P2 - 100.00000 VOLTS/VOLT +00048 VOLTS SUPPLY VOLTAGE CHANNEL P1-P20004177 VOLTS/SUPPLY VOLT / PS1 +0000CG08 VOLTS/SUPPLY VOLT TOTAL PRESSURE COEFFICIENT9980000998 STATIC PRESSURE COEFFICIENT9980001080 OUTPUT YOLTAGE CHANNEL P3-P214000 VOLTS +0000196 VOLTS/VOLT AMPLIFIER GAIN CHANNEL P3-P214000 VOLTS +01080 OUTPUT YOLTAGE CHANNEL P3-P21200000 VOLTS/VOLT +28000 VOLTS/VOLT SUPPLY VOLTAGE CHANNEL P3-P21200000 VOLTS +01080 VOLTS SUPPLY VOLTAGE CHANNEL P3-P2200.00000 VOLTS/SUPPLY VOLT TRANSDUCER SENSITIVITY CHANNEL P3-P20016600 VOLTS/SUPPLY VOLT ANGLE CALIBRATION CONSTANT28.80 PSID/DEG. +58080 PSID/DEG. UNICERTAINTIES DUE TO COMPONENTS (PSI) As a colspan="6">SSD CPI 00644001290498802575 .00	AMPLIFIER GAIN CHANNEL PI-P2 - 100.00000 VOLTS/VOLT	PI-P2 = 100.00000 V0LTS/V0LT +02000 V0LTS/V0LT PI-P2 = 12.00000 V0LTS +00048 V0LTS CHANNEL PI-P20004177 V0LTS/SUPPLY V0LT / PSI +000CC08 V0LTS/SUPPLY V0LT ENT = .9980000998 :IENT = .9980001080 P3-P2 = .14000 V0LTS +0000196 V0LTS P3-P2 = .14000 V0LTS +0000196 V0LTS CHANNEL P3-P20016600 V0LTS/SUPPLY V0LT / PSI +000C076 V0LTS/SUPPLY V0LT ANT = .52.80 PSID/DEG. +58080 PSID/DEG.	P1-P2 = 100.00000 V0LTS/V0LT +C2000 V0LTS/V0LT P1-P2 = 12.00000 V0LTS +00048 V0LTS CHANNEL P1-P20004177 V0LTS/SUPPLY V0LT / PSI +000CC08 V0LTS/SUPPLY V0LT ENT = .9980000998 :IENT = .9980001080 P3-P2 = .14000 V0LTS +0000196 V0LTS P3-P2 = .14000 V0LTS +0000196 V0LTS P3-P2 = .200.00000 V0LTS +01580 V0LTS CHANNEL P3-P20016600 V0LTS/SUPPLY V0LT / PSI +0000C076 V0LTS/SUPPLY V0LT ANT = 52.80 PSID/DEG. +58080 PSID/DEG.	PI-P2 = 100.00000 V0LTS/V0LT +02000 V0LTS/V0LT PI-P2 = 12.00000 V0LTS +00048 V0LTS CHANNEL PI-P20004177 V0LTS/SUPPLY V0LT / PSI +0000C008 V0LTS/SUPPLY V0LT ENT = .99800001080 P3-P2 = .14000 V0LTS +0000196 V0LTS P3-P2 = .14000 V0LTS +28000 V0LTS P3-P2 = .200.00000 V0LTS +01680 V0LTS CHANNEL P3-P20016600 V0LTS/SUPPLY V0LT / PSI +0000076 V0LTS/SUPPLY V0LT	P1-P2 = 100.00000 V0LTS/V0LT +02000 V0LTS/V0LT P1-P2 = 12.00000 V0LTS +00048 V0LTS CHANNEL P1-P2 = .0004177 V0LTS/SUPPLY V0LT / PSI +0000C008 V0LTS/SUPPLY V0LT ENT = .9980000998 :IENT = .9900001080 P3-P2 = .14000 V0LTS +0000196 V0LTS P3-P2 = .14000 V0LTS +0000196 V0LTS	P2 = 100.00000 VOLTS/VOLT +02000 VOLTS/VOLT P2 = 12.00000 VOLTS +00048 VOLTS NNEL P1-P2 = .0004177 VOLTS/SUPPLY VOLT / PSI +0000CGO8 VOLTS/SUPPLY VOLT = .99800 +00998 T = .90000 +01080	P2 = 100.00000	P1-P2 = 100.00000	P1-P2 = 100.00000 VOLTS/VOLT +02000 P1-P2 = 12.00000 VOLTS +00048 VOLT		P1-P2 = 5.40000 VULIS +0000432	

_	<i>_</i>										·×. ·-				
	AD-A1	57 108	COL	MPRESS MPRESS MONAUT	OR RES DR INL ICAL L	EARCH ET TOT ABS MR	FACIL AL PR. IGHT-	ITY F1 (U) PATTER	00 HIG AIR FO SON AF	H PRES RCE WE B OH	SURE		3/	3 .	
	UNCLAS	SSIFIE	D H i	COPE	VHAVER	OCT 8	4 AFW	AL-TR-	84-203	0	F/G	21/5	NL		.
												END			
_		_									_				

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

P1 = 5.00000 VOLTS +00004 VOLTS
SUPPLY VOLTAGE CHANNEL P1 = 120.00000 VOLTS/VOLT +02000 VOLTS/VOLT SUPPLY VOLTAGE CHANNEL P1 = 12.00000 VOLTS +00046 VOLTS
CHANNEL P1 = .0001253 VOLTS/SUPPLY
OUTPUT VOLTAGE CHANNEL P1-P2 - 6.00000 VOLTS +0000480 VOLTS
ANPLIFIER GAIN CHANNEL PI-PZ = 100.00000 VOLTS/VOLT +02000 VOLTS/VOLT
SUPPLY VOLTAGE CHANNEL PI-PZ = 12.00000 VOLTS +00048 VOLTS
TRANSDUCER SENSITIVITY CHANNEL PL-P2 = .0004177 VOLTS/SUPPLY VOLT / PSI +0000008 VOLTS/SUPPLY VOLT / PSI
TOTAL PRESSURE COEFFICIENT99800 +00998
STATIC PRESSURE COEFFICIENT 90000 61060
OUTPUT VOLTAGE CHANNEL P3-P215000 VOLTS +0000210 VOLTS
AMPLIFIER GAIN CHANNEL P3-P2 - 200.00000 VOLTS/VOLT +28000 VOLTS/VOLT
SUPPLY VOLTAGE CHANNEL P3-P2 - 12.00000 VOLTS +01680 VOLTS
TRANSDUCER SENSITIVITY CHANNEL P3-P2 = .0016600 VOLTS/SUPPLY VOLT / PSI +0000076 VOLTS/SUPPLY VOLT / PSI
ANGLE CALIBRATION CONSTANT - 52.50 PSID/DEG. +58080 PSID/DEG.
UNCERTAINTIES DUE TO COMPONENTS (PSI)
E01 A1 E51 51 E00 A0 ESO SO CPT CPS
.0002700670001340498802682 .00000000010000000003000021334000032
TOTAL PRESSURE - 33.55 PSIG+15 PSI UNCERTAINTY IN TOTAL PRESSURE5 PERCENT OF READING
UNCERTAINTIES DUE TO COMPONENTS (PSI)
E01 A1 E51 S1 E00 A0 E50 S0 CPT CPS
.000270067000134049880268200011002670005301659010671334016008
STATIC PRESSURE - 20.18 PSIG+22 PSI UNCERTAINTY IN STATIC PRESSURE - 1.1 PERCENT OF READING
UNCERTAINTIES DUE TO COMPONENTS (PSI)
EGA AA C
.00028002780006900398 .02187
ANGLE - 1.99 DEGREES02271 DEG. UNCERTAINTY IN ANGLE - 1.1 PERCENT OF READING
Figure B-2 (Cont'd)

	P1 = 12.00000 VOLTS00046 VOLTS
	+2+00*- 69000*- /6200*- /6700*-
00297002970006900424	
+20070006900424	AA ESA SA
AA00297002970006900424	DUE TO COMPONENTS
AA ESA SA SA00297006900424 .02	- 21.73 PSIG+24 PSI UNCERTAINTY IN STATIC PRESSURE - 1.1 PERCENT OF
C PRESSUME - 21.73 PSIG+24 PSI UNCERTAINTY IN STATIC PRESSURE - 1.1 PERCENT OF UNCERTAINTIES DUE TO COMPONENTS (PSI) AA ESA SA C00297002970006900424 .02333	00724001450498802894000120028900058016590115614446
0072400145049880289400012002890005801659011561444 TATIC PRESSURE - 21.73 PSIG424 PSI UNCERTAINTY IN STATIC PRESSURE - 1.1 PERCENT OF UNCERTAINTIES DUE TO COMPONENTS (PSI) OA AA ESA SA C 6030002970006900424 .02333	A1 E51 51 E00 A0 E50 S0 CPT
A1 E51 51 600 A0 ESD SO CPT007240014504988028940001200289016590115614446 TATIC PRESSURE - 21.73 PSIG+24 PSI UNCERTAINTY IN STATIC PRESSURE - 1.1 PERCENT OF READI UNCERTAINTIES DUE TO COMPONENTS (PSI) DA AA ESA SA C 0030002970066900424 .02333	UNCERTAINTIES DUE TO COMPONENTS (PSI)
AL ESI SUE TO COMPONENTS (PSI) AL ESI S1 EDD AD ESD S0 CPT 007240014502894000120028900058016590115614446 TATIC PRESSURE - 21.73 PSIG+24 PSI UNCERTAINTY IN STATIC PRESSURE - 1.1 PERCENT OF READI UNCERTAINTIES DUE TO COMPONENTS (PSI) DA AA ESA SA C 6030002970006900424 .02333	- 36.21 PSIG+16 PSI UNCERTAINTY IN TOTAL PRESSURE = .5
07AL PRESSURE - 36.21 PSIG+- .16 PSI UNCERTAINTY IN TOTAL PRESSURE - .5 PERCENT OF READING A1 ES1 S1 E00 A0 ES0 S0 CPT 00724001450498802894000120028900058016590115614446 04988024 PSI UNCERTAINTY IN STATIC PRESSURE - 1.1 PERCENT OF READING DA AA ESA SA C 003000297000690042402333 .02333 .02333	00724001450498802894 .000000000100000000030000214446
00724001450498802894 .000000000100000000030000214446 OTAL PRESSURE - 36.21 PSIG+16 PSI UNCERTAINTY IN TOTAL PRESSURE5 PERCENT OF READING AL ESI S1 E0D AD ESD S0 CPT 0072400145049880289400012002890016590115614446 TATIC PRESSURE - 21.73 PSIG+24 PSI UNCERTAINTY IN STATIC PRESSURE = 1.1 PERCENT OF READING AA ESA SA C 00730002970006900424 .02333	A1 ESI SI EOD AD ESD SD CPT
### ### ### ### ### ### ### ### ### ##	DUE TO
UNCERTAINTIES DUE TO CONFONENTS (PSI) 41	CALIBRATION CONSTANT = \$2.80 PSID/DEG. +56080
AMCERTAINTIES DUE TO COMPONENTS (PSI) E01 A1 ES1	CHANNEL P3-P2 = .0016600 VOLYS/SUPPLY VOLY / PSI +0000076 VOLTS/SUPPLY VOLY /
TRANSGUCER SERSITIVITY CHANNEL P3-P20016-600 VOLTS/SUPPLY VOLT FRANSGUCER SERSITIVITY CHANNEL P3-P20016-600 VOLTS/SUPPLY VOLT	P3-P2 - 12.00000 VOLTS +-
SUPPLY VOLTAGE CHANNEL P3-P2 - 12.00000 VOLTS01660 VOLTS TRANSDUCER SENSITIVITY CHANNEL P3-P20016600 VOLTS/SUPPLY VOLT / FSI0000076 VOLTS/SUPPLY VOLT / FSI00000760000007600000776000007600000760000076000007600000760000007600000760000076000007600000760000076000007600000760000076000007600000760000076000007600000760000076000007600000760000007760000007600	P3-P2 = 200.00000 VOLTS/VOLT +28000
SUPPLY VOLTAGE CHAINGE P3-P2 - 12:00000 VOLTS/VOLT	VOLTAGE CHANNEL P3-P2 16000 VOLTS +0000224
OUTDUT VOLTAGE CHANNEL P3-P2 16000 VOLTS 0000224 VOLTS ANTHEIER CAIM CHANNEL P3-P2 200.00000 VOLTS/FVOLT 28000 VOLTS/FVOLT SUPPLY VOLTAGE CHANNEL P3-P2 12.00000 VOLTS/FVOLT 28000 VOLTS/FVOLT ANGLE CALIGATION CONSTANT 52.80 PSID/DEC 58080 PSID/DEC. ANGLE CALIGATION CONSTANT 52.80 PSID/DEC. ANGLE CALIGATION CONSTANT 500002 14446 ANGLE CALIGATION CONSTANT 100000 100002 14446 ANGLE CALIGATION CONSTANT 100000 100002 14446 ANGLE CALIGATION CONTANT 100000 1000	TENT90000 ←
STATIC PRESSURE COEFFICIENT	ENT = .99800 +-
TOTAL PRESSURE COEFFICIENT	CHANNEL PI-P20004177 VOLTS/SUPPLY VOLT / PSI +0006008 VOLTS/SUPPLY VOLT /
TOTAL PRESSURE COEFFICIENT900000000224 VOLTS0000000 VOLTS0000224 VOLTS0000000 VOLTS0000224 VOLTS	P1-P2 = 12.00000 V0LTS +00048
TOTAL PRESSURE COEFFICIENT	P1-P2 - 100.00000 VOLTS/VOLT +02000
SUPPLY VOLTAGE CHANNEL P-22 - 100,00000 VOLTS/SUPPLY VOLT/ PST0000000 VOLTS/SUPPLY VOLT	P1-P2 - 6.50000 V0LTS +0000520
AMPLIFIES CALINGE CHANNEL PL-P2 - 100,00000 VOLT5	CHANNEL PI = .0001253 VOLTS/SUPPLY VOLT / PSI +0000002 VOLTS/SUPPLY VOLT /
TRANSDUCER SENSITIVITY CHANNEL P.P.P. 1,0001253 VELTSTUPELY VELT PRINTSTUREY VELT	P1 = 12.00000 VOLTS +00048
THANSOUGER SERSITIVITY CHANNEL P1 - 12-0000 VOLTS - 12-000123 VOLTS/SUPPLY VOLT / PST - 12-000012 VOLTS/SUPPLY VOLT / PST - 12-000012 VOLTS/SUPPLY VOLT / PST - 12-000012 VOLTS/SUPPLY VOLTS/SUPPLY VOLTAGE CHANNEL P1-P2 - 12-0000127 VOLTS/SUPPLY VOLTAGE CHANNEL P1-P2 - 12-00000 VOLTS - 12-0000 VOLTS/SUPPLY VOLTS/SUPPLY VOLTAGE CHANNEL P1-P2 - 12-00000 VOLTS/SUPPLY VOLTS/SU	
AMPLIFIER GAIN CHANNEL PI = 100.00000 VOLTS	P1 = 100.00000 VALTY/VALT + 02000

KANTAN MEREKERAKAN KANTAN MENGERAKAN KANTAN MEREKER

2.3 1.2 3.33 1.0 3.97 .0 6.95 .0 8.65 .5 11.52 .5
6.95 11.52 5 13.05
13.052
5 11.52 5 13.05 4 14.40
13.05
14.40

CO-LT
15.74
17.07
16.40
19-11
4 20.18
20.16
21.73

APPENDIX C

ENGINE CORE INLET TEST DATA

TABLE C-1
TRAVERSE POSITIONING CHART

WEDGE PROBE CHANNEL 1

	Engine istance From Center Line in.	Traverse Travel Outward in.	Voltage Setting Volts	
ID	8.75	0.0	475	
A	9.034	0.034	-0.55	
В	9.318	0.318	-1.323	
С	9.602	0.602	-2.098	
D	9.885	0.885	-2.826	
E	10.169	1.169	-3.556	
F	10.453	1.453	-4.297	
G	10.737	1.737	-5.070	
H	11.021	2.021	-5.759	
I	11.305	2.305	-6.524	
J	11.588	2.588	-7.292	
K	11.872	2.872	-7.942	
L	12.156	3.156	-8.747	
*M	12.440	3.440	-9.511	

^{*} Splitter Wall

TABLE C-2 F100(3) ENGINE PO72 CORE INLET PROFILE DATA AT POSITION 2.5

			•	
CORE SPIEC	94705 96400 96600 96600 96800 96800 96800 96800	12903 12734 12754 12756 12756 12755 12763 12764 12784 12784	10426 10422 10422 10422 10428 10428 10423 10423 10423 10423	11563 11567 11565 11555 11555 11556 11567 11551 11551 11551 11555 11555 11555 11555
FAN SPEED (RP4)	4730 4733 4733 4733 4725 4725 4727 4731 4731 4730	9729 9707 9696 9704 9696 9715 9711 9731	655 655 655 655 655 655 655 655 655 655	85774 85774 85577 85577 85577 85577 85577 85573 85573 85573 8713
Triab.	131.3 130.9 128.0 127.1 123.8 123.5 122.7 122.7 122.7 123.5	1118.6 2018.0 275.1 275.1 269.1 269.9 2824.9 298.6 298.6 292.6	131. 176.4 172.4 170.0 164.7 161.7 1659.7 161.5 161.5	254. 229.2. 229.2. 229.2. 220.2. 215.3. 2221
KACH NO.	000000000000000000000000000000000000000	00000000000000000000000000000000000000	00000000000000000000000000000000000000	00000000000000000000000000000000000000
PS (PSIA)	18.02 17.98 17.98 13.00 17.99 18.00 18.00 18.00 18.00 18.00	10.00 10.00	21.90 21.34 21.867 21.867 21.86 21.86 21.98 21.98 21.98	28 09 27 18 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
PT (PSIA)	19.83 19.45 19.45 19.46 19.19 18.63 18.63 18.58	45,60 44,28 41,05 40,79 40,79 40,70 39,62 41,11 41,11	25.64 25.32 24.95 24.54 24.54 23.87 23.47 23.25 23.30 23.20 23.20	15, 67 15, 32 13, 32 13, 24 13, 24 13, 24 13, 36 11, 66 11, 63 11, 63 11
90-STIRE ANG. (DECREES)	61,65 65,26 65,26 73,14 73,69 73,90 73,13 73,13 63,44	64.55 659 659 659 659 659 659 659 659 659 6	62.37 65.54 79.33 74.73 74.70 74.67 74.65 63.07 63.29	63.94 70.73 73.749 73.55 73.55 63.88 63.88 63.88 63.88 63.88 63.88
SWIRE ANGEE (DEGREES)	28.35 24.74 24.74 10.86 10.81 16.31 16.13 16.87 19.88 29.58	25.45 22.545 19.97 114.97 113.79 113.79 26.23 26.34 26.34 25.35	27.63 24.46 17.22 16.22 15.23 15.60 17.46 26.05 28.71	26.06 10.27 10.27 116.27 116.44 116.44 119.35 26.32 26.52 26.52 26.52
SPAN	0.000 0.000	200,000,000,000,000,000,000,000,000,000	224.0 224.0 224.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23	24.24.24.24.24.24.24.24.24.24.24.24.24.2
614, °f P05. (1404.3)	3.3.2.2.2.2.2.3.3.2.2.2.3.3.2.2.2.2.3.3.2.2.2.3	0.26 0.854 1.12 1.12 1.28 2.24 3.03 3.03	0.25 0.55 0.55 0.55 1.14 1.40 1.40 1.40 1.40 1.40 1.25 1.25 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30	0.000 1.000
er	0 4 7 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	113 114 115 117 118 118 118 118 118 118 118 118 118	8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	MUWW444444 447 600000000000000000000000000000000000

Kandans v dodunam demondem in secondam in describer in indicate in the secondam in secondam in the secondam in

TABLE C-3

F100(3) ENGINE PO72 CORE INLET PROFILE DATA AT POSITION 2.3

(Jan) Cont Spirit	12762 12749 12749 12749 12749 12745 12745 1280 12795	99999999999999999999999999999999999999
FAN SPUED (RPH)	9716 9724 9719 9719 9712 9721 9731	4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Tire.	286.0 272.4 272.4 272.4 266.1 271.0 271.0 283.9 285.2	111.2 111.2 110.1 109.8 110.0 1112.0 113.6
MACII 140.	000000000000000000000000000000000000000	00000000000000000000000000000000000000
PS (PSIA)	10000000000000000000000000000000000000	17.88 17.88 17.89 17.90 17.93 17.69 17.69 17.69
P. (PSIA)	44444444444444444444444444444444444444	18.23 18.43 18.46 18.53 18.53 18.85 19.02
90-S-IPL AJG.	62.52 63.15 62.53 62.53 62.53 53.12 63.24 63.24 63.90 64.89	69 14 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
SJIRL ANCLE (DEGREES)	28.30 27.48 27.42 28.74 28.74 30.74 36.76 36.76 36.76	48.76 32.78 26.78 24.52 23.49 21.54 21.54 21.60 21.80
SPAN	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9922 6692 6692 6692 6692 6692 6692 6692
LIMEAR POS. (LACHES)	2.53 2.13 2.13 2.13 2.13 2.13 2.13 2.13	2.63 2.643 2.143 1.73 1.43 0.73 0.53
PT. NO		22 1 2 0 0 0 0 0 0 0 1 C C C C C C C C C C C C

AFWAL-TR-84-2030

APPENDIX D

EXISTING PRESWIRL VANE TEST PREPARATION AND DATA

TABLE D-1
TRANSDUCER BENCH CALIBRATIONS

(Inlet Preswirl Vane Test)

		_			
-	1 PSID		5 PSID		
S/N	1 3004	S/N	46255		
Pressure (PSI)	Output (mV)	Pressure	Output		
(F51)	(mv)	(PSI)	(mV)		
0.000	-0.57	0.000	-0.19		
0.200	3.45	1.000	10.00		
0.400	7.47	2.000	20.19		
0.600	11.50	3.000	30.30		
0.800	15.49	4.000	40.46		
1.000	19.47	5.000	50.59		
0.800	15.49	4.000	40.46		
0.600	11.45	3.000	30.36		
0.400	7.48	2.000	20.17		
0.200	3.46	1.000	10.02		
0.000	-0.57	0.000	-0.17		

Figure D-1. Traverse Angular Calibration (S/N ER165263)

Figure D-2. Traverse Radial Calibration (S/N ER165263)

Figure E-1. CRF/F100 Compressor Rig Inlet Model

PRESWIRL VANE AND PRESSURE PROFILE SCREEN DETAILED DESIGN

The aerodynamic design of the inlet preswirl vane was based upon the profile data obtained at Station 2.3 from the PO-72 engine test. As shown in Figure E-1, a streamline model was made of the inlet system from the bellmouth to the intermediate case; profile screen loss, vane loss, and vane turning were iterated to produce the desired Station 2.3 profile. A summary of the synthesized vane geometry is presented in Figures E-2 and E-3. For this vane, the turning distribution, the exit swirl distribution, and the exit pressure profile is presented in Figure E-4. The required screen discharge pressure profile is presented in Figure E-5.

APPENDIX E

MODIFIED PRESWIRL VANE DESIGN AND PHASE I TEST DATA

¥	00000000000000000000000000000000000000	000000
S.	133.33 133.33 133.33 133.43 133.44 133.44 133.44 133.51	000000
£	14.11 14.11 14.11 14.11 14.11 14.11 14.11 14.11 14.11	000000
£	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	. 000000
SWIRL ANGLE	6022245666555555555555555555555555555555	
SPAN		000000
TATH		000000
PATM	######################################	2 000000
MIDSPAN M		2 000000
VANE ANGLE		့ ၀၀၀၀၀
z.	23210988766543210 53210988766543210	455 455 457 459 459

MIDSPAN M# PATH TATH	0.28 14.33 73.8 0.28 14.33 74.2 0.28 14.33 74.5 0.28 14.33 74.9 0.28 14.33 74.9 0.28 14.33 74.9 0.28 14.33 75.0 0.28 14.33 75.0 0.28 14.33 75.0 0.28 14.33 75.0	0.54 14.23 73.4 0.54 14.23 73.3 73.4 0.54 14.23 73.3 73.4 0.54 14.23 73.1 0.54 14.23 73.3 0.54 14.23 73.3 0.54 14.23 73.8 0.54 14.23 73.8 0.54 14.23 73.8 0.54 14.23 73.8 0.54 14.23 73.8 0.54 14.23 73.8 0.54 14.23 73.8 0.54 14.23 73.8 0.54 14.23 73.8 0.54 14.23 73.8 0.54 14.23 73.8	0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45	0.36 14.21 80.5 0.36 14.21 80.5 0.36 14.21 80.6 0.36 14.21 80.9 0.36 14.21 80.9 0.36 14.21 80.9 0.36 14.21 80.9 0.36 14.21 80.9 0.36 14.21 81.3 0.36 14.21 81.0 0.36 14.21 81.0
AT.4 T	44444444444444444444444444444444444444	44444444444444444444444444444444444444	22333333333333333333333333333333333333	4.21 80. 4.21 80. 21. 80. 80. 80. 80. 80. 80. 80. 80
SWIRL SWIRL	7.528.48.88.88.78.78.88.88.88.88.88.88.88.88.88	53. 1.7. 2.5. 3.0. 3.0. 5.0. 5.0. 5.0. 5.0. 5.0. 5	82 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	843922883 844066886 846058 84605 8605 8
, ANGLE TT	26 26 26 26 26 26 27 23 23 23 23 20 20 20 20 20 20 20 20 20 20 20 20 20	25 23 23 25 25 25 66.7 25 66.7 25 67.9 27 28 69.3 29 20 69.3 20 69.3 20 69.3 20 20 69.3	25 24 24 25 25 25 25 26 27 27 27 27 27 27 27 27 27 27 27 27 27	25 23 24 25 25 25 25 26 26 27 27 28 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20
Ţď	1144 1144 1144 1144 1144 1144 1144 114	13.99 14.03 14.03 14.03 13.91 13.91 13.86 13.81 13.78	13.09 13.09 13.09 13.09 13.09 13.09 13.09 13.09 13.09 13.09 13.09	1144 1144 11444 1172 1172 1173 1174 1174 1174 1174 1174 1174 1174
es CL	13.52 13.52 13.52 13.52 13.55 13.55 13.56 13.66 13.66 13.66 13.66 13.66	11.20 11.21 11.26 11.36 11.33 11.33 11.38 11.54 11.54 11.68	12.16 11.99 11.99 12.04 12.08 12.10 12.20 12.22 12.22 12.25 12.35 12.49	12.85 12.75 12.75 12.81 12.82 12.82 12.93 12.99 12.99
** 5	25 25 27 28 27 28 27 27 28 25 25 25 25 25 25 25 25 25 25 25 25 25	477 8 8 7 5 4 5 5 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5		00000000000000000000000000000000000000

T + VAN	100 100 100 100 100 100 100 100 100 100	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	200 200 200 200 200 200 200 200 200 200	3371 3372 3372 3374 3376 3376 3381 3881 3881
WE ANGLE	222222222222222222222222222222222222222			
MIDSPAN M				
PATM	10000000000000000000000000000000000000			
TATM		ၟ ၟ ၟ ၟ ၟ ၟ ၟ ၟ		
& SPAN	5.4.08.88.88.88.88.88.88.88.88.88.88.88.88.	53 177 186 186 186 186 186 186 186 186 186 186	82 44 46 48 48 48 48 48 48 48 48 48 48 48 48 48	66 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
SWIRL ANGLE	*0555555555555555555555555555555555555	48002344555344	2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
ŧ	88 88 88 98 98 98 98 98 98 98 98 98 98 9	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	662. 662. 662. 662. 662. 663. 746. 663. 746.	72.17 72.19 72.19 72.17 72.17 72.17 72.17 72.17
F	14.29 14.29 14.29 14.29 14.29 14.29 14.26 14.26 14.25 14.25	14.26 14.20 14.20 14.20 14.20 14.20 14.00 14.00 14.00	14.29 14.29 14.30 14.30 14.30 14.30 14.29 14.29	14.30 14.30 14.20 14.20 14.20 14.20 14.20
PS	13.54 13.54 13.55 13.55 13.55 13.66 13.66 13.66		12.34 12.34 12.33 12.33 12.33 12.33 12.51 12.51 12.53 12.53 12.53 12.53	13.02 13.02 13.02 13.03 13.04 13.11 13.11 13.11
£	000000000000000000000000000000000000000		00000000000000000000000000000000000000	00000000000000000000000000000000000000

					TABLE D-2 (C	(Cont'd)				
•	VANE ANGLE	MIDSPAN M	PATM	TATM	* SPAN	SWIRL ANGLE	£	ΡŢ	e S	33
173	50	C	4			2.5	~	~	7	
274	200		. ~	i		0 0	: -		, ~	
, ,	2	•				77	: .	: `) u	
7 (9	•	•	; ,	٠.	7 (٠.	•	•	•
9/7	97	4	?	;	i,	77	i.	? .	֓֜֝֜֜֜֜֜֜֝֜֜֜֜֜֓֓֓֓֜֜֜֜֓֓֓֓֜֜֜֜֓֓֓֓֓֜֜֜֜֓֓֓֡֓֡֡	•
117	07	Ä	2	;	;	57	4.		2	•
2.78	20	7	Ψ,	?		24	_;			•
279	20	~	۳.	;	•	23	;	4.3	3.5	•
280	20	'n	7	;	÷	23	ä	. .	3.6	•
281	20	~	£.3	4	÷	23	ä	4:3	3.6	
282	20	0.28	14.37	82.4	69.3	22	81.9	14.30	13.63	0.26
283	20	7	£.3	;		21	ä	4.2	3.6	
284	20	~	4.3	4	4	20	-	4.2	3.6	
285	20	7	4.3	;	2	19	;	4.3	3.7	•
286	20	7	4.3	2	m.	23	-	4.3	3.6	
	ļ				,		1	•		,
287	25	š	÷	75.8		23	ď	4.	1.7	ŝ
288	25	Š	£:3	è.	7	21	ċ	4.2	1.6	S
289	25	Š	4.3	•	Š	22	_	~	1.6	5
290	255	ď		9	,	23	-	~		
291	25.			9		36	: .			, "
292) C			2		40	: -	~		•
100) u	ì	;;	•	•	7 7	:.	•	:.	? "
700	7 (9	? .	٠,	•	• 7	:.	•	;;	•
167	3	'n	?	٠,	÷.	77			1.7	'n
295	25	ň	£.	7	;	23	ä	Ž.		'n
296	25	ň	4. 3	æ	6	22	ë	4.3	1.8	'n
297	25	ň	£.3	æ	;	21	÷	4.2	1:9	S
298	25	Ň	£.3	æ	÷	22		4.2	2.0	*
299	25		4.3	6	?	23	Š	4.3	2.1	•
õ	25	0.54	۳.	8	53.9	24	73.1	14.36	11.79	0.54
쭚		7	•	'n			i	4.3	2.5	4
7 8		٠.	ب	ŝ			₹;	4.2	2.4	•
23		۳	4.3	÷	'n		ä	4.3	2.3	•
304		٠.	£:3	÷	ä		4	4.3	2.4	•
305		٠.	f.3	ŝ	0		-;	4.3	2.4	•
306		٠.	£.3	'n	8		4	4.3	2.4	4
307		۲.	4.3	ŝ	•		?	4.3	2.4	*
308		7	£.3	'n.	~		ä	4.3	2.5	•
309		*	4.3	9	-1		m	4.3	2.5	-
310		•		'n	6		<u> </u>		2.5	•
311			-	'n	7		.	7	2.6	. 4
312		-	4.3	'n	4		-	4.2	2.7	4
313		7		'n	7		-		2.8	-
314	25	0.45	4.3	85.6	53.9	24	82.6	14.36	12.51	0.45
;		•	•	,		,				
315	52	۳.		.	_	24	۲,	4.2	m,	۳.
316	67.	٠,	. ·	έ.		21	7.	7.	÷.	٠.
716	C 7	•	? .		_	77	;,	7.	÷,	".
910	7 (?'	•	: .	_	6.2	;,	? .	;	•
416	77	9.0	14.31	7.00	30.00	\$ 7 C	0.27	14.31	13.03	
331	1 4 6	•	; ,	; ,		7 4 6	;,	•	• •	•
177	0 7 C	•	•	• •	- 1	* *	;,	•	÷.	•
777	6 7 6	•		; ,	_	* * C	•	•	٠,	•
100	77	•	•	: .	_	F (; ,	•	÷.	•
305	5,5	•		•		77	;,	, ,		•
300	J 6	٠,		;	_	17.00	•	•	; .	•
200	7 4 C	•		•		77	•	••	•	• ~
328	2 5	۳.	. ע ייי	; -		70	٠,	 	• ~	? ~
•	:	•) •	•	_	F	;	•	'n	•

	Σ.	00000000000000000000000000000000000000	00000000000000000000000000000000000000	00000000000000000000000000000000000000	000000000000000000000000000000000000000
	PS	112.36 12.36 12.36 12.36 12.55 12.55 12.55 12.55 12.75 13.75	11.78 11.63 11.63 11.63 11.76 11.80 11.82 11.99	12.51 12.34 12.34 12.34 12.55 12.55 12.55 12.55 12.55 12.55 12.55	13.11 13.00 13.00 13.00 13.01 13.01 13.12 13.14 13.28 13.28
	PT	14.38 14.38 14.38 14.38 14.38 14.38 14.13 14.13 14.13	14.37 114.34 114.34 114.33 114.33 114.33 114.33 114.33 114.33 114.33 114.33 114.33 114.33	14.23 14.27 14.32 14.33 14.01 14.01 14.23	14.34 14.33 14.33 14.33 14.23 14.22 14.22 14.22 14.22
	Ħ	78.33 77.92 77.92 77.92 78.66 80.33 60.33	668.1 668.3 668.3 669.1 771.4 771.3	46446466666666666666666666666666666666	79.7 79.3 79.3 79.8 79.6 80.0 80.5 80.1 80.1 80.0 80.0
(Cont'd)	SWIRL ANGLE	013555555555555555555555555555555555555	3001223333333	22333333333333333333333333333333333333	3000133334 200013334 3000133334 30001333334 300013333334 300013333334 300013333334 300013333334 300013333334 300013333334 300013333334 300013333334 30001333334 30001333334 3000133334 3000133334 300013334 300013334 30001334 30001334 3000134 30000134 30000000000
TABLE D-2 (C	* SPAN	53.25.25.25.25.25.25.25.25.25.25.25.25.25.	8 4 4 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	60 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	53. 12.2. 13.3. 13.5. 13
	TATM		14.4.1.7.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	4.7.7.7.7.7.8.8.7.8.9.0.0.8.7.8.7.8.7.8.7.8.7.8.7.8.7.8.7.8.7	88 88 11.2 88 88 11.2 88 8 12.3 88 12.3 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11
	PATM				11144444444444444444444444444444444444
	MIDSPAN M	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	**************************************	99999999999999999999999999999999999999	
	VANE ANGLE	កាមាលភាមាមាមាមាមមាមាមាម	2222222222222	222222222222222222222222222222222222	200000000000000000000000000000000000000
	±	222 222 222 222 222 222 222 223 223 223	6 3 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	25 25 25 25 25 25 25 25 25 25 25 25 25 2	255 265 266 266 266 270 270 271 271

こととのできます。 これのこれをは、 これのことのできません これのことをはない これのことをはない これのことの はいましょう これのこと これのこと

Σ	000000000000000000000000000000000000000		0.28 0.23 0.23 0.23 0.23 0.24 0.27	00000000000000000000000000000000000000
φŞ	13.05 13.05 13.06 13.06 13.06 13.10 13.20 13.20 13.20	1122 122 122 122 122 122 122 123 123 123	133.554 133.555 133.556 133.566 133.660 133.660 133.660 133.660 133.660	11.80 11.68 11.68 11.66 11.76 11.76 11.92 11.92 11.92
PT	1114 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1112 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1144 1444 1444 1444 1444 1444 1444 144	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Ŧ	00000000000000000000000000000000000000	6666 64 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6	40000000000000000000000000000000000000	71.9 70.9 71.9 72.0 73.9 74.1 74.1 76.3
SWIRL ANGLE	5 6 6 6 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	20222222222222222222222222222222222222	2001222222222	08888000000000000000000000000000000000
# SPAN	53 20 20 20 20 20 20 20 20 20 20 20 20 20	52 22 22 23 24 24 25 25 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 27 27 27 27 27 27 27 27 27 27 27 27	53 54 55 56 56 56 56 56 56 56 56 56 56 56 56	598 746 66 68 68 68 68 68 68 68 68 68 68 68 68
TATM	6688.196.000.000.000.000.000.000.000.000.000.0	00000000000000000000000000000000000000	00000000000000000000000000000000000000	46566666666666666666666666666666666666
PATM				
MIDSPAN M		00000000000000000000000000000000000000	00.288888888888888888888888888888888888	
VAME ANGLE	22222222222222	222222222222	**************************************	សេសសសសសសសសសស សស
g. •	160 160 163 1663 1668 1668 170 172 173	174 175 175 177 179 180 181 182 183 183 184	186 1189 1190 1191 1194 1195 1196 1199 1199 1199	203 204 205 206 206 208 210 211 213 214 215

	Σ			00000000000000000000000000000000000000	00000000000000000000000000000000000000
	S	13.06 12.98 12.98 13.02 13.02 13.05 13.23 13.23 13.23	12.33 12.33 12.33 12.33 12.34 12.36 12.56 12.56 12.56 12.56	11.72 11.55 11.55 11.66 11.72 11.72 11.93 11.72 11.72	11.67 11.56 11.56 11.59 11.63 11.64 11.70 11.70 11.88 11.88 11.98
	PŢ	14. 14. 14. 14. 14. 14. 14. 14. 14. 14.	14.29 14.29 14.22 14.22 14.23 14.23 14.23 14.23	14.27 13.80 13.80 14.10 14.23 14.12 14.12 14.12 14.12 14.23 14.23 13.30 13.30 13.30 13.30 13.30	10 10 10 10 10 10 10 10 10 10 10 10 10 1
	Ŧ	71. 71. 70. 70. 71. 71. 72. 72. 73. 74. 75. 76. 76. 77. 77. 77. 77. 77. 77. 77. 77	644 00000000000000000000000000000000000		00000000000000000000000000000000000000
Q	SWIRL ANGLE	75555555555555555555555555555555555555	22222222222	222222222222222222222222222222222222222	5.00 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5
TABLE D-2 (Cont'd)	SPAN	57 12 22 23 23 23 23 23 23 23 23 23 23 23 23	53 23 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25	5.22 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	82 188 488 488 488 488 488 488 488 488 488
	TATM	24777777777777777777777777777777777777	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	600.0000000000000000000000000000000000
	PATM				
	MIDSPAN M		00000000000000000000000000000000000000		
	VANE ANGLE				115 115 115 115 115 115 115 115 115 115
	<u>z</u>	1004 1005 1005 1006 1110 1115 1115	1119 1120 1120 1126 1126 1128	5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	10000000000000000000000000000000000000

CONTROL OF THE PROPERTY OF THE

	Σ	00000 0000 0000 0000 0000 0000	00000000000000000000000000000000000000	0.29 0.29 0.29 0.22 0.22 0.22 0.25 0.25	00.23 00.23 00.23 00.23 00.23 00.24 00.25
	S Q	11.79 11.56 11.68 11.70 11.88	13.20 13.15 13.15 13.15 13.18 13.22 13.28 13.28 13.41	13.65 13.65 13.66 13.66 13.72 13.74 13.74	13.56 13.56 13.56 13.56 13.56 13.56 13.56 13.56
	PT	14.32 14.02 14.34 14.40 14.40	1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		16.33 14.23 14.23 14.23 14.33 14.23 14.23 14.23 14.23
	Į,	30. 31. 32. 32. 33. 33. 33. 33. 33.	00000000000000000000000000000000000000	881222222000000000000000000000000000000	66666666666666666666666666666666666666
	SWIRL ANGLE	15 20 20 20 18 17	5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	88899000000000000000000000000000000000	222222222222222222222222222222222222222
TABLE D-2 (Cont'd)	& SPAN	53.9 23.1 36.5 69.3	53 173 223 247 265 265 265 265 265 265 265 265 265 265	03.22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
TAE	TATM	36.52 36.53 36.53 36.53			
	PATM	11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
	MIDSPAN M#	00000 0000 00000 00000		00.00000000000000000000000000000000000	88888888888888888888888888888888888888
	VANE ANGLE	999999	ស មា ស ស ស ស ស ស ស ស ស ស ស ស	ហេសាមាសេសសមាមាសេសស	
	÷	665540 1006476	00000000000000000000000000000000000000	7	00000000000000000000000000000000000000

7
백
₹ 1

	Ξ	7 7 7 7 8 8 8 8 8 7 8 8 8 8 8 8 9 9 9 9			
	PS	13.38 13.38 13.38 13.38 13.37 13.42 13.42 13.42 13.45 13.45	11.70 11.62 11.61 11.67 11.75 11.92 11.92 11.92 11.95 11.95	12.39 12.39 12.39 12.39 12.65 12.58 12.63 12.63 12.63	13.18 13.12 13.12 13.12 13.13 13.22 13.29 13.38
	ጀ	146.15 146.15 146.15 146.15 146.15 146.15 146.15 146.15 146.15	14.29 14.29 14.32 14.33 14.33 14.33 14.35 14.35 14.35 13.99	146.33 146.33 146.33 146.33 146.43 146.43 146.43 146.43 146.43	14.39 14.39 14.39 14.39 14.39 14.39 14.35 14.35 14.35 14.35
	ŧ	######################################	227.2 226.2 227.2 2 2 2	29 300.48 300.66 300.11 300.13 300.13 300.13 300.13 300.13	89899999999999999999999999999999999999
VANE DATA	SWIRL ANGLE	11 12 13 14 14 14 16 16 16 16 16 16 16 16 16 16 16 16 16	10000000000000000000000000000000000000	11 22 22 23 25 25 26 11 11 11 11 11 11 11 11 11 11 11 11 11	118 20 20 118 118 119 119 119
INLET PRESWIRL VA	8 SPAN	88 7 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	53 23 23 23 23 23 24 24 25 25 25 26 26 27 26 27 26 27 27 27 27 27 27 27 27 27 27 27 27 27	62 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
EXISTING)	TATH	66666666666666666666666666666666666666			%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
	PATM				
	MIDSPAN M			99999999999999999999999999999999999999	
	VANE ANGLE	000000000000	000000000000		000000000000
	-	32109846648210	76543220987654		44444446000000000000000000000000000000

	SZ	DUCERS 0-F POTE			TPAVERSES
	U-1 PSID	U-S PSID			WEDGE PFOBE
Y-INTERCEPT (PSI)	0.059	0.004	RADIAL POS. (% SPAN)	os.	05. 23.1
& CHANGE DURING DATA AQUISITION	0.014	0.004	% CHANG DATA A(& CHANGE DURING DATA AQUISITION	SE DURING -0.03
SLOPE (PSI/VOLT)	0.397	0.791	ROTATIONAL ANGLE (0=AXIAL)	ANGLE	ANGLE 20
& CHANGE DURING DATA AQUISITION	0.004	-0.016	& CHANG	& CHANGE DURING DATA AQUISITION	E DURING 0.00 UISITION

*** INLET PROFILE DATA ***

	7	4.5 FUSITION	SOTE	MIDSPAN MACH ## U. 54	. J4	
	POINT 4= 206		DATE: 05-05-82	TIME: 10:13:09	13:09	
		PATM= 14.40 PSIA	PSIA	TATM= 75.	75.8 F	
WEDGE	WEDGE PROBE (PSID)	SID)	STATIC	STATIC TAPS (PSID)	HOT	HOT WIRE (VOLTS)
PATM-P1	P1-P2	P3-P2	PATM-P4	PATM-P5	ည္ရ	AC
0.023	2.493	0.023	1.297	2.781	0000	0.001
0.015	2.455	-0.004	1.267	2.736	-0.000	
0.001	0.009	0.005	0.007	0.012	0.000	000.0
0.018	2.476	0.004	1.280	2.761	-0.000	

	5.0 23.1 71.9 14.38 11.65 0.56
REDUCED DATA	VANE ANGLE= # SPAN TT= PT= PS= MACH #= SWIRL ANGLE=

MAX. Min. Std dev. Avg.

Figure D-5. Sample of Existing Inlet Preswirl Vane Test Output

190

Figure E-2. CRF/F100 HPC Rig, Preswirl Vane Geometry (I)

Figure E-3. CRF/F100 HPC Rig, Preswirl Vane Geometry (II)

Figure E-4. CRF/F100 Preswirl Vane, Turning Distribution

Figure E-5. CRF/F100 Compressor Rig Inlet, Screen Discharge Pressure Profile at Design Flow

*** CALIBRATION INFORMATION ***

	TRANSDUCERS	UCERS		TRAVERSES	S
	0-1 PSID	0-5 PSID		WEDGE PROBE	HOT WIRE
Y – IN FERCEPT (PSI)	0.050	0.001	RADIAL POS. (% SPAN)	23.1	24.0
& CHANGE DURING DATA AUUISITION	-0.004	-0.001	& CHANGE DURING DATA AQUISITION	0.02	-0.02
SLOPE (PSI/VOLF)	0.398	0.789	ROTATIONAL ANGLE (0=AXIAL)	19.7	-42.7
& CHANGE DURING DATA AQUISITION	0.033	-0.093	& CHANGE DURING DATA AQUISITION	0.01	0.02

*** INLET PROFILE DATA ***

MIDSPAN MACH #= 0.54

2.5 POSITION

		HOT WIRE (VOLTS)	O d		0.008			•
3:25:24	75.7 F	нол	20	4.373	0.022 0.022 4.330			Seemle Outro
TIME: 09:25:24	TATM= 7	STATIC TAPS (PSID)	PATM-P5	5.201	0.005 5.193			Tect (Phace I
DAFE: 09-13-82	PSIA	STATIC	PATM-P4	0.717	0.001			Figure E-6. Modified Preswir Vane Test (Phase I) Sample Quitnut
	PATM= 14.37 PSIA	(a	P3-P2	0.016	0.002		11.35 40.2 52.9	6. Modified 6
POINT #= 686		WEDGE PROBE(PSID)	P1-P2	2.697	0.021		PT RAKE= MDOT= CMDOT=	Figure E-
		MEDK	PAT'4-P1	2.185 2.096	0.022		20.0 23.1 72.6 12.24 9.31	20
				SAX. SIS.	STD DEV. A VG.	REDUCED DATA	VANE AUGLE= % SPAN TT= PT= PS= MACG #=	SMIRE ANGLE=

TABLE E-1 ED PRESUIRE VANE TEST PHASE I DATA	TATE & SPAN	4.5	5.6 5.6	5.9 30.	6.5 38.	7.7	5.9 61.	6.0 69.	5.9	75.9 92.4	5.0 7.	5.5	5.7 23.	5.7 38.	5.7 46.	6.1 61.	6.0 69.	76.6 84.7		2.5 15.	23.	2.3 30.	2.7	2.7 61.	2.6 69.	72.8	3:1 32.	4.7 15.	4.7 23.	38.	5.3	5.3	5.0	76.0 84.7	
314100M	SPAN M# PATM	.28 14.4	. 28 14.4 . 28 14.4	. 28 14.4	. 28 14.4	72 14.4	.23 14.4	. 28 14.4	28 14.4	.28 14.	.54 14.3	.54 14.3	54 14.3	.54 14.3	.54 14.3	.54 14.3	.54 14.3	, vi, v		.45 14.3 .45 14.3	14.3	.45 .45	14.3	.45 14.3 .45 14.3	14.3	24.	. 43 . 46.3	.54 14.3	.54 14.3	.54 14.3	.54 14.3	54	.54 14.3	.54 14.3	
I See	VANE AGGLE NIDS	0	> C	0	0	7	0	9	00	20	Ĉ O	0	o c		00		00	2000								200	•		· · · ·) (A)	n in	15	
Ses silla ossissississislaadi oo oo oo oo alaanaad	40 E4 C4	670	671 672	673	674	675	679	678	679	661	183	589	9 Y	889	6 C C C C C C C C C C C C C C C C C C C	691	692	9 6 6 9 6 6 9 6 7		702	704	705	707	80/ 709	710	712	511	717	718	720	721	723	724	726	
os o le tos e																		20	9																

_	
=	
-	
75	
Z	
J	
Ť	
_	
7	
3	
ů	
[-3 T	
ů	
ů	

\$ 7 8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
¥	00000000000000000000000000000000000000	00000000000000000000000000000000000000	00000000000000000000000000000000000000	00000000000000000000000000000000000000
PS	100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00		10.00 9.99 10.00 10.00 10.00 10.04 10.04 10.13	88888888888888888888888888888888888888
£	13.19.1 13.19.1 12.59.1 11.55.1 11.56.1 11.56.1	12.26 10.98 10.98 10.98 10.98 10.59 10.55 10.55	12.38 11.58 11.61 11.61 11.61 11.61 11.28	11.87 12.24 12.24 12.36 12.31 11.93 11.60 10.71 10.73 10.73
SWIRL ANGLE	22222222222222222222222222222222222222	222222222666 2522222226666 25322222222	22222222222222222222222222222222222222	22222222222222222222222222222222222222
* SPAN	10884896788 - 2869848746 - 418848860074	00 00 00 00 00 00 00 00 00 00 00 00 00	741.000.000.000.000.000.000.000.000.000.0	22.7 23.1 23.1 23.2 25.2 65.2 661.6 661.6 661.7 661.7
TATH			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	8 0 7 7 1 1 3 7 3 6 6 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
PATH				100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MIDSPAN M	00000000000000000000000000000000000000		00000000000000000000000000000000000000	
VANE ANGLE	2222222222	2222222222		พ.พ.พ.พ.พ.พ.พ.พ.พ.พ.พ.พ.พ.พ.พ.พ.พ.พ.พ
:	730 731 732 733 734 736 740	744 745 746 746 750 751 751 753	758 769 769 763 764 764 766	772 773 774 774 776 779 780 781

POSONI EPA LASSANI EZZAZAKA FRANKASALI ERRIMAKAKATA KAKATA

TABLE E-1 (Cont'd)

\$ 0.45 14.26 62.3 15.7 14.8 12.8	VANE ANGLE	MIDSPAN MO	PAT	TATM	о.	SWIRL ANGLE	L Å	PS	Ť	STA
1.00 1.00	vn v	*:	4.2	~ ~	7.	÷.	2.5	10.06	0.57	2.5
11.26 64.5 11.26 11.2	ח ער	•	, ,	40	•	· .	, c) ·	•	•
1, 1, 2, 2, 3, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,	יט ר	: <		10	; 0	•	,,	! ~	V	•
1, 26 64.5 14.26 14.	יט ל	•	4.2	. ~			7		, 4	
14.26 64.1 64.5 65.9 64.5	'n	1	1.2	(9	. 8	9.1	0		
1, 1, 2, 6, 6, 5, 6, 5, 6, 6, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,	ĸ	1	4.2	•	~	0	1.5	0	•	
64.4 66.4 66.4 66.4 66.4 66.4 66.5 66.4 66.5 <td< td=""><td>'n</td><td>7</td><td>4.2</td><td>•</td><td>6</td><td>+</td><td>1.5</td><td>0.1</td><td>₹.</td><td>•</td></td<>	'n	7	4.2	•	6	+	1.5	0.1	₹.	•
64.4 77.0 22.4 11.5 64.5 14.26 64.4 77.0 22.4 11.5 64.5 14.26 64.5 92.4 25.3 11.5 6.28 14.32 58.4 7.7 18.0 11.3 6.28 14.32 58.3 23.1 16.9 11.3 6.28 14.32 58.3 23.1 16.9 11.3 6.28 14.32 58.1 46.2 22.7 11.3 6.28 14.32 58.1 46.2 22.7 11.3 6.29 14.32 58.1 46.2 22.7 11.3 6.28 14.32 58.3 7.0 69.3 22.7 11.3 6.28 14.32 58.3 7.0 84.7 26.1 11.3 6.28 14.32 58.3 7.0 84.7 26.1 11.3 6.28 14.32 58.3 7.0 16.2 11.3 11.3 6.28	'n	₹.	4.2	•	ä	ä	1.4	0.0	•	•
64.5 14.26 64.3 84.7 25.3 111.5 6.4.5 92.4 26.2 111.5 6.4.5 92.4 26.2 111.5 6.28 14.32 58.4 7.7 18.0 6.28 14.32 58.1 16.3 13.8 6.28 14.32 58.1 16.3 13.8 6.28 14.32 58.1 16.3 13.8 6.0.28 14.32 58.1 66.2 20.4 13.8 6.0.28 14.32 58.0 66.2 20.4 13.8 6.0.28 14.32 58.0 66.2 20.4 13.3 6.0.28 14.32 58.0 66.2 20.4 13.3 6.0.28 14.32 58.3 7.0 16.4 13.3 6.0.28 14.32 58.3 16.4 16.4 13.3 6.0.28 14.32 58.3 16.4 16.4 13.3 7.0 16.3 16.3	'n	*	4.2	•		+	1.5	0.2	*	
14.26 64.5 92.4 26.2 11.5 11.5 12.8	un.	*	4.2	•	+	δ.	2.5	0.2	•	
6 0.28 14.32 58.4 7.7 18.0 13.8 6 0.28 14.32 58.3 15.4 16.9 113.8 6 0.28 14.32 58.3 30.8 16.9 113.9 6 0.28 14.32 58.1 36.2 20.7 18.4 113.9 6 0.28 14.32 58.0 54.0 21.7 13.9 13.9 7 0.28 14.32 57.9 69.3 24.7 13.9 13.9 8 0.28 14.32 58.0 77.0 26.1 13.3 13.3 9 0.28 14.32 58.3 77.0 26.1 13.3	S	-	4:2	•	7	9	1.5	0.3	7	
10.28			7	æ	7.7	œ	~	2. B	~	
5 5 6 0 28 14.32 58.3 23.1 16.8 13.9 13.9 13.9 13.9 13.9 13.9 14.32 58.1 38.5 13.1 16.8 13.9 14.32 58.2 30.8 14.32 58.1 14.32 58.3 1		٠		• •		:			. ~	•
1.00 1.00		•	? .	•		•	• • •	• •		•
1.00 1.00		•	? .	· .	;	٠,	,	9 (•	•
1.0		٠		, œ	;	ġ,	2	9.7	7	٠
6.28 14,32 58.1 46.2 20.4 13.7 6.28 14,32 58.1 46.2 21.7 13.3 6.28 14,32 57.9 69.3 22.0 13.3 6.28 14,32 57.9 69.3 24.7 13.3 6.28 14,32 58.0 7.0 26.1 13.3 6.28 14,32 58.3 7.0 16.4 13.4 6.28 14,32 58.3 7.0 16.2 13.5 6.28 14,32 58.3 38.5 16.2 13.5 6.28 14,32 58.3 38.5 16.2 13.5 6.28 14,32 58.3 46.2 13.2 13.5 6.28 14,32 58.3 46.2 13.2 13.5 6.28 14,32 58.3 46.2 13.3 13.5 6.28 14,32 58.3 46.2 13.3 13.5 6.29 14,32 58.3<			4.3		œ ·	.	3.8	2.8	۳.	•
5 0.28 14.32 58.0 54.0 21.7 13.5 5 0.28 14.32 57.9 61.6 22.9 13.3 5 0.28 14.32 57.9 64.6 22.9 13.3 5 0.28 14.32 58.0 7.0 26.1 13.3 0.28 14.32 58.3 7.0 16.4 13.3 0.28 14.32 58.3 15.4 16.5 13.5 0.28 14.32 58.3 16.2 13.5 0.028 14.32 58.3 46.2 17.9 13.5 0.028 14.32 58.3 56.3 22.7 13.9 0.28 14.32 58.3 46.2 11.2 13.1 0.28 14.32 58.3 56.3 22.7 12.9 0.28 14.32 58.3 46.2 11.2 13.0 0.28 14.32 58.3 56.4 27.9 12.9			4 .3	œ	ė		3.7	2.8	۳.	٠
6.28 14.32 57.9 61.6 22.9 13.3 6.28 14.32 58.9 77.9 69.3 22.9 13.3 6.28 14.32 58.0 77.9 66.2 13.3 6.28 14.32 58.3 7.0 16.4 13.3 6.28 14.32 58.3 7.0 16.2 13.3 6.28 14.32 58.3 16.2 13.3 6.28 14.32 58.3 16.2 13.3 6.28 14.32 58.3 30.8 16.2 13.5 6.28 14.32 58.3 30.8 13.1 13.5 6.28 14.32 58.3 46.2 13.7 13.1 6.28 14.32 58.3 46.2 13.7 13.1 6.28 14.32 58.3 46.2 13.7 13.0 6.28 14.32 58.3 46.2 13.3 13.0 6.28 14.32 58.3 46.3			4.3	8	÷	ä	3.5	2.8	~	•
69.3 24.7 14.32 57.9 69.3 24.7 13.3 65.0 14.32 58.0 77.0 28.1 13.3 65.0 14.32 58.0 92.4 30.9 13.3 65.0 14.32 58.3 7.0 16.4 13.3 60.28 14.32 58.3 7.0 16.4 13.3 60.28 14.32 58.3 30.8 13.2 60.28 14.32 58.3 30.8 13.2 60.28 14.32 58.3 46.2 13.2 60.28 14.32 58.3 46.2 13.2 60.28 14.32 58.3 46.2 13.2 60.28 14.32 58.3 46.2 13.0 60.28 14.32 58.3 46.2 13.0 60.28 14.32 58.3 46.2 12.9 60.28 14.32 58.3 46.2 12.0 60.28 14.32 58.3			4.3	7	4	ς.	3.3	2.8	~	
0.28 14.32 58.0 77.0 26.1 13.3 0.28 14.32 58.3 7.0 16.4 13.3 0.28 14.32 58.3 7.0 16.4 13.3 0.28 14.32 58.3 7.0 16.2 13.3 0.28 14.32 58.3 30.8 16.2 13.3 0.28 14.32 58.3 30.8 16.2 13.1 0.28 14.32 58.3 30.8 16.2 13.1 0.28 14.32 58.3 30.8 16.2 13.1 0.28 14.32 58.3 30.8 16.2 13.1 0.28 14.32 58.3 53.9 22.7 12.9 0.28 14.32 58.3 53.9 24.2 12.9 0.28 14.32 58.3 77.0 25.2 12.9 0.28 14.34 59.8 30.4 27.9 12.9 0.54 14.24 59.9<				7	6			2.8	7	
0.28 14.32 57.9 84.7 28.2 13.3 0.28 14.32 58.0 92.4 30.9 13.3 0.28 14.32 58.3 7.0 16.4 13.4 0.28 14.32 58.3 15.4 16.5 13.7 0.28 14.32 58.3 30.8 16.5 13.7 0.28 14.32 58.3 66.2 17.9 13.1 0.28 14.32 58.4 66.2 17.9 13.1 0.28 14.32 58.3 67.6 13.0 13.1 0.28 14.32 58.3 67.6 12.9 13.0 0.28 14.32 58.3 67.6 12.9 13.0 0.28 14.32 58.3 67.6 12.9 12.9 0.28 14.32 58.3 67.7 26.2 12.9 0.54 14.34 59.8 30.4 27.9 12.8 0.54 14.24 59.				. 6		9	, m	2.8	7	•
0.28				,	4			2.9	7	•
0.28					7		3.0	12.95	0.20	2.5
0.28		•								
0.28	10		4.3	8		ė	3.7	2.3	•	2.5
0.28 14.32 58.1 23.1 16.5 13.2 0.28 14.32 58.3 30.8 16.8 13.1 0.28 14.32 58.4 46.2 19.7 13.0 0.28 14.32 58.4 46.2 19.7 13.0 0.28 14.32 58.4 61.6 22.7 13.0 0.28 14.32 58.4 61.6 22.7 13.0 0.28 14.32 58.3 77.0 25.2 12.9 0.28 14.32 58.3 77.0 25.2 12.9 0.28 14.32 58.3 84.7 27.9 12.9 0.54 14.32 58.3 92.4 27.9 12.9 0.54 14.24 59.8 30.8 14.5 12.4 0.54 14.24 59.9 30.8 14.5 11.5 0.54 14.24 59.9 53.9 10.6 0.54 14.24 59.9 53	10		4.3	8	ŝ	9	3.5	12.29	0.37	2.5
0.28 14.32 58.3 30.8 16.8 13.1 0.28 14.32 58.4 46.2 17.9 13.1 0.28 14.32 58.4 46.2 17.9 13.1 0.28 14.32 58.3 53.9 21.3 13.0 0.28 14.32 58.3 69.3 24.2 12.9 0.28 14.32 58.3 84.7 26.2 12.9 0.28 14.32 58.3 84.7 26.2 12.9 0.54 14.32 58.4 92.4 27.9 12.9 0.54 14.24 59.8 15.4 13.4 12.1 0.54 14.24 59.9 30.8 14.5 11.5 0.54 14.24 59.9 46.2 16.0 0.54 14.24 59.9 46.2 10.8 0.54 14.24 59.9 53.9 20.9 0.54 14.24 59.9 61.6 10.6	01			8	ë	9	3.2	2.2	۳.	
0.28	10			8		6	3.1	2.2	٣.	
0.28 14.32 58.4 46.2 19.7 13.0 0.28 14.32 58.3 53.9 21.3 13.0 0.28 14.32 58.4 66.2 19.3 22.7 12.9 0.28 14.32 58.3 69.3 22.7 12.9 0.28 14.32 58.4 69.3 22.4 22.7 12.9 0.28 14.32 58.4 92.4 27.0 25.2 12.9 0.54 14.24 59.9 30.8 15.4 13.4 12.1 0.8 0.54 14.24 59.9 30.8 16.0 10.8 16.0 10.8 0.54 14.24 59.9 53.9 53.9 53.9 53.9 53.9 53.9 53.9	9		-				-	2,3	۳.	
0.28 14.32 58.4 61.6 22.7 12.9 0.28 14.32 58.4 61.6 61.6 22.7 12.9 0.28 14.32 58.4 61.6 59.3 24.2 12.9 0.28 14.32 58.3 77.0 25.2 12.9 0.28 14.32 58.3 77.0 25.2 12.9 0.54 14.24 59.8 15.4 15.2 12.8 0.54 14.24 59.9 30.8 16.0 10.8 0.54 14.24 59.9 30.8 16.0 10.8 0.54 14.24 59.9 46.2 18.4 12.1 0.8 0.54 14.24 59.9 46.2 18.5 10.8 0.54 14.24 59.9 77.0 22.8 10.0 0.54 14.24 59.9 61.6 61.6 22.8 10.0 0.54 14.24 59.9 61.6 61.6 22.8 10.0 0.54 14.24 59.9 61.6 61.6 22.8 10.0 0.54 14.24 59.9 61.6 61.6 22.8 10.0 0.54 14.24 59.9 61.6 61.6 62.8 22.8 10.6 0.54 14.24 59.9 61.6 62.8 22.8 10.6 0.54 14.24 59.9 61.6 62.8 22.8 10.6 0.54 14.24 59.9 61.6 62.8 22.8 10.6 0.54 14.24 59.9 61.6 62.8 22.8 10.6 0.54 14.24 59.9 61.6 62.8 22.8 10.6 0.54 14.24 59.9 61.6 62.8 22.8 10.6 0.54 14.24 59.9 61.0 62.4 28.3 10.6 0.54 14.24 59.9 61.0 62.4 28.3 10.6 0.54 14.24 59.9 61.0 62.4 28.3 10.6 0.54 14.24 60.1 61.6 61.6 22.8 10.6 0.54 14.24 60.1 61.6 61.6 62.8 22.8 10.6 0.54 14.24 60.1 61.6 62.8 22.8 10.6 0.54 14.24 60.1 61.6 62.8 22.8 10.6 0.54 14.24 60.1 61.6 62.8 22.8 10.6 0.54 14.24 60.1 61.6 62.8 22.8 10.6 0.54 14.24 60.1 61.6 62.8 22.8 10.6 0.54 14.24 60.1 61.6 62.8 22.8 10.6 0.54 14.24 60.1 61.6 62.8 22.8 10.6 0.54 14.24 60.1 61.6 62.8 22.8 10.6 0.54 14.24 60.1 61.6 62.8 22.8 10.6 0.54 14.24 60.1 61.6 62.8 22.8 10.6 0.54 14.24 60.1 61.6 62.8 22.8 10.6 0.54 14.24 60.1 61.6 62.8 22.8 10.6 0.54 14.24 60.1 61.6 62.8 22.8 10.6 0.54 14.24 60.1 61.6 62.8 22.8 10.6 0.54 14.24 60.1 61.6 62.8 22.8 10.6 0.54 14.24 60.1 61.6 62.8 22.8 10.6 0.54 14.24 60.1 61.6 62.8 22.8 10.6 0.54 14.24 60.1 61.6 62.8 22.8 10.6 0.54 14.2 60.2 10	9		7		ú		3.0	2.3	7	
0.28	2 -	•			,	٠.	, ~	֓֞֜֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֡		•
0.28	2 -	•	֓֞֜֜֜֓֓֓֜֜֓֓֓֓֓֓֜֓֜֓֓֓֓֓֓֓֓֓֡֓֓֡֓֓֓֓֡֓֓	• a	; -	;	, ,			•
0.28 14.32 58.3 77.0 25.2 12.9 0.28 14.32 58.4 92.4 27.0 25.2 12.9 0.28 14.32 58.4 92.4 27.9 12.8 12.8 0.54 14.24 59.8 15.4 13.4 12.1 13.4 12.1 0.54 14.24 59.9 30.8 16.0 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11	2 -	٠			; ,	; ,	•	•	• •	•
0.28 14.24 59.8 15.4 13.4 12.8 0.54 14.24 59.9 15.4 13.4 12.8 0.54 14.24 59.9 30.8 15.2 12.8 12.8 0.54 14.24 59.9 30.8 15.4 13.4 12.1 0.54 14.24 59.9 30.8 16.0 11.1 13.4 12.1 0.54 14.24 59.9 46.2 18.5 16.0 11.1 0.54 14.24 59.9 46.2 18.5 10.6 0.54 14.24 59.9 61.6 61.6 22.8 10.6 0.54 14.24 59.9 61.6 61.6 22.8 10.6 0.54 14.24 59.9 61.6 62.8 22.8 10.6 0.54 14.24 59.9 61.6 62.8 22.8 10.6 0.54 14.24 59.9 61.6 62.8 22.8 10.6 0.54 14.24 59.9 61.6 62.8 22.8 10.6 0.54 14.24 59.9 64.7 25.5 10.6 0.54 14.24 59.9 64.7 25.5 10.6 0.54 14.24 59.9 64.7 25.5 10.6 0.54 14.24 59.9 64.7 25.5 10.6 0.54 14.24 59.9 64.7 25.5 10.6 0.54 14.24 59.9 64.7 25.5 10.6 0.54 14.24 59.9 64.7 25.5 10.6 0.54 14.24 59.9 64.7 25.5 10.6 0.54 14.24 59.9 64.7 25.5 10.6 0.54 14.24 59.9 64.7 25.5 5 10.6 0.54 14.24 59.9 64.2 50.6 0.54 14.24 59.9 64.2 50.6 0.54 14.24 59.9 64.2 50.6 0.54 14.24 59.9 64.2 50.6 0.54 14.24 50.6 0.54 14.24 50.6 0.54 14.24 50.6 0.	3 -	•	•	•		: 4	;	, .	: .	•
0.28	2 5	•	֓֞֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜	•	: ,	٠,	;;		• •	•
0.54	2.5	٠	? .	•	•	• •	, ,	, . , .	• •	
0.54	2	•	•	•	•	:		•	•	•
0.54 14.24 59.8 15.4 13.4 12.1 0.54 14.24 59.8 23.1 13.4 12.1 13.4 12.1 13.4 12.1 13.4 12.1 13.4 12.1 13.4 12.1 13.4 12.1 13.4 12.1 13.4 12.1 13.4 12.1 13.4 12.1 13.4 12.1 13.4 13.4 13.4 13.4 13.4 13.4 13.4 13	c		4.2	6	7.7	ú	2.2	•	9	•
0.54	• •	•	3				7		Ċ	
0.54 14.24 59.9 30.8 14.5 11.5 0.54 14.24 59.9 30.8 16.0 11.1 10.8 0.54 14.24 59.9 30.8 16.0 11.1 10.8 0.54 14.24 59.9 61.6 22.8 10.6 0.54 14.24 60.0 61.6 22.8 10.6 0.54 14.24 59.9 77.0 24.1 10.6 0.54 14.24 59.9 84.7 25.5 10.6 0.54 14.24 50.9 84.7 25.5 10.6 0.54 14.24 50.9 84.7 25.5 10.6 0.54 14.24 60.1 92.4 22.5 10.6	•	٠	,		, ~		7	•	4	
0.54 14.24 59.9 38.5 16.0 11.1 0.8 0.54 14.24 59.9 38.5 16.0 11.1 0.8 0.54 14.24 59.9 38.5 10.6 22.8 10.7 0.54 14.24 59.9 61.6 22.8 10.6 0.54 14.24 59.8 69.3 22.8 10.6 0.54 14.24 59.9 77.0 24.1 10.6 0.54 14.24 59.9 84.7 25.5 10.6 0.54 14.24 50.1 92.4 22.5 10.6	• •	•		•	;	;	· -	•	4	•
0.54 14.24 59.9 46.2 18.2 10.8 10.7 0.54 14.24 59.9 46.2 18.2 10.7 0.54 14.24 59.9 46.2 1.6 22.8 10.6 0.54 14.24 59.9 77.0 24.1 10.6 0.54 14.24 59.9 84.7 25.5 10.6 0.54 14.24 59.9 84.7 25.5 10.6 0.54 14.24 60.1 92.4 22.5 10.6	,	•		٠,	· «		-	•	4	
0.54 14.24 59.9 53.9 20.9 10.6 0.54 14.24 60.0 61.6 22.8 10.6 0.54 14.24 59.9 69.3 23.9 10.6 0.54 14.24 59.9 64.7 25.5 10.6 0.54 14.24 60.1 92.4 28.5 10.6 0.54 14.24 60.1 92.4 28.3 10.6	•	٠		•	;	•	, a	•		•
0.54 14.24 60.0 61.6 22.8 10.6 0.54 14.24 59.9 77.0 24.1 10.6 0.54 14.24 59.9 84.7 25.5 10.6 0.54 14.24 60.1 92.4 28.3 10.6	> c	•	•	i	;		, ,	٠	•	٠
0.54 14.24 59.8 69.3 23.9 10.6 0.54 14.24 59.9 77.0 23.9 10.6 0.54 14.24 59.9 84.7 25.5 10.6 0.54 14.24 60.1 92.4 28.3 10.6	>	٠	, .	i	;.	;,	;	•		•
0.54 14.24 59.9 64.7 25.5 10.6 0.54 14.24 60.1 92.4 28.3 10.6 0.54 14.24 60.1 92.4 28.3 10.6	0 (•	•	;	÷	i.	9 4		20.0	
0.54 14.24 59.9 64.7 25.5 10.6 0.54 14.24 60.1 92.4 28.3 10.6	> (7		י ע	;,	•	•	ņ	•
0.54 14.24 60.1 92.4 28.3 10.6	0	•	7	<u>,</u>	٠.	٤.	9 .	•	ņ	•
0.54 14.24 60.1 92.4 28.3 10.6	0	•	7	.	j,	'n.	9.0	•	ij.	•
	•		÷		ö	ë	9.	•	•	•

- t	VANE ANGLE	MIDSPAN M&	PATH	TATM	SPAN	SWIRL ANGLE	Ł	PS	Ì	STA
•	•	•	٠					•	,	
1 + 9	9	•	7	;	•	;	2.7	9	۰	•
842	0	•	7	;	•	7	2.8	9	۰	•
843	•	٦,	7.	ö	•	ä	7.6	0	ņ	
844	•	*	4.2	6		÷	2.0	6.6	5	
845	•	1	4.2	ď		6	1	•	1	
846	. c	•	3	6		, a				
247	> <	. 1			•	;		. 0		
	•	•			•	i	•	١.	•	_
	•	: •	•	;	•	•	•	•	•	
7 0	>	•	•	;	•	;,	7 .	, c	•	
300	> '	•	7	;	٠	;	•		•	_
451	.	0.40	14.24	0.00		25.2	11.38	10.11	19.0	2.5
825	3	•	7.	;	•		۲.۲	7.0	•	•
2.5	20		4	•		-	2		٠	•
85.6	2	•					7	•	9	
857	50							•		. ,
8.58	000	•			6		7	•		
9 0) c	٠	. ~	•	· ~		, r	•	•	•
600	•	•		•	:		; ;	•	•	
) q	9 6	•	֓֞֜֜֞֜֜֜֜֜֓֓֜֜֜֜֜֜֜֜֜֜֓֓֓֜֜֜֜֜֓֓֓֜֜֜֜֓֜֓֜֡֓֜֡		•	: a		•	: <	•
	9 6	•	֓֞֜֜֞֜֜֓֓֓֓֜֜֜֜֓֓֓֜֜֜֜֓֓֓֓֜֜֜֜֓֓֡֓֜֜֜֜֡֓֓֡֓֡֡֡֡֡֡	•	; -	· -	• ~	•	: •	•
7 7	9 6	•	֓֞֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜	•	: 0		: :	•	: -	
7 7 9 0	3 6	•	•	•		•	;;	•	: -	•
• • • • • • • • • • • • • • • • • • • •	26	•	•	•	٠.		;,	•	: `	•
699	9 6	, .	65.41			32.4	11.27	76.6	7 6	
9	3	٠	•	•	;	'n	1	•	•	•
6 98	20	4	4.3		•	2	3.4	8.0	5	
870	70	•	4.3	•	'n.	7	2.9	8	S.	
871	20	*	4.3		~	7	2.4	8.0	٦.	•
872	70	۲.	4.3	•		7	2:1	6.0	۲.	•
873	70	₹.	4.3	•		+	2.1	6.0	۳.	•
874	70	٠.	.3		Ġ	7	2.1	6.0	۳.	٠
875	70	₹.	. 3	•	÷	ę.	2.0	6.0	<u>~</u>	•
876	70	₹.	'n.	•	÷		2.0	1.0	'n.	•
877	70	0.45	14.39	71.2	69.5	30.4	12.08	11.05	0.36	2.3
878	70	•	m .	•	:		7.7	1:0	m,	٠
679	20	•	7	•	٠,	;	Z. 1	7	m (•
0 8 8	20	•	۲.	•	;	,	2.0	7:1	~	
883		•	4.3		•	7	2.1	4	9	
88.8			7	٠.		٠		ې	٧	
28.5		3			, ~		7	ď	2	
AAA			7		6		,	۷	2	
8 8 7			. 4				,	ď	2	
200			_				-	Ù	. "	•
0 0		•			•		; -	9	? <	•
N 6		•	֝֡֓֜֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֡֓֓֓֡֓֓֓֓֡֓֡֓֡֓֡		: .		•	9	•	٠
200		•			;,	n u		P. Y	•	•
760		•			, ,	•	0 a	•	•	•
740		•			: •		9.0	• •	• ~	
7 A Q	<u>.</u>	. O	4. 4.	7.69	00.7	28.3	10.7	^ ~ ~		
074		٠	?		i			•	•	٠

STA	222		• •			•	•	•	•			•	•	•	2.3	•	•	•						•	 	•		•	•	•		2.0	•		•
Σ	0.61	ب به به	. .	• •	4.0	7	s.	'n.	. u		7	۳.	ښ		0.32	m.	. 7	9,4		S	•	• •	: •	4	0.36	9	'n	ŝ	₹.	: 1	۳.	0.37	<u>س</u> د	ĴŲ	7
PS	9.42	is is	• ••	ه ه			0.5	5.0	9,0	9.0	0.7	0.7		. a	10.80	8.	٠,	ů.	3 ~		ຕຸເ		. 4	7.	9.50 9.54	0.3	0.3	0.3	٠. د	֓֞֜֞֜֜֝֓֞֜֝֓֜֜֝֓֓֓֜֝֜֜֝֓֓֓֓֜֝֜֜֡֓֡֓֓֜֝֡֜֜֝֡֡֡֡֡֡ ֓֓֞֓֞֞֞֓֞֞֞	•	10.43	•		.5
PŢ	12.14 12.42 12.48	2.5		9.0	9.0	6.0	2.8	2.9		. 6	2.4	1.9	1.6) . '	11.58	1.7	3.0	2.7	1.4	1.1	0.0		9.0	9.0	10.39 10.26	3,3	3.0	2.4	2.1	9	7.6	11.44	4	֡֡֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֓֡֓֡֓֡֓֡֓֡֓֓֡֡֡֡	1:1
SWIRL ANGLE	17.3 17.1 16.6			•	60		7.	٠,			4	m.	÷.,	•	29.8	'n	٠.	m' •		7	٠ •	; ~	; ;	ë	24.8 28.9	-	m	÷	'n.	:.		23.5	, ,	; ;	
SPAN	7.7 15.5 22.6		ė .	٠.6		, i	7.	'n,	'n c		6	÷	٠,	,,	84.7	~	~	ห์ ๓	;	8	٠·	÷	;	۲.	84.7 92.5		3	÷	<i>.</i>	•	; ;	61.7	e, L	: ;	
TATM	74.5	÷÷.	÷ ÷	÷÷	÷ -		ė	٠,			ê.	•		٠	76.9	ė	•	•	• •		•				77.0	•	•	9	٠ س			76.2		'n	3
PATM	14.39	m.m.	. m	4.4	4.3	. m	4.3	m i	7 ~	7 17	4.3		, v	7 ~	14.39		4.3			4.3	4.		4.3	4.3	14.39 14.39	4.3	4.3	£.3		? ~		14.39		. m	4.3
MIDSPAN ME	0.54	4	ų.	Ş	N, u	, ry	*	₹.	• •	. 4	*	₹.	₹. •	•	0.4.0	7	Ŋ,	بن بر	برز	Ň	بن بن	, v	'n	Ň.	0.54	7	•	7	7	•	•	0.45	•	•	7
VANE ANGLE	15 15 15						15	15	- T	15	15	15	15 15	5 -	51	15	10	9 5	39	10	91	0 [22	01	10 10	10	07	07	01.	35	22	01	0 7	201	01
<u>.</u>	897 898 899	900 901	903 803	904 905	906	806	-	~ -	- ا	4 –	~	~ .		40	921	~	~	7	10	~	m r	7 ~	'n	•	935 936	m	•	4	•	* 4	•	946	• •	•	S

PS M#	9.25 9.36 9.36 9.34 9.32 9.32 9.32 0.63 9.35 0.43 0.42 0.42 0.42 0.42 0.43 0.43 0.43	0.40 0.46 0.46 0.46 0.44 0.44 0.47 0.36 0.36 0.35 0.36 0.35 0.35 0.35 0.35	9.30 9.40 9.40 9.48 9.44 0.50 9.44 0.44 9.44 0.44 0.44 9.45 9.45 0.43 9.52 0.43 9.52 0.43 9.52 0.43 9.52 0.43 9.53 0.43 9.54 9.55 0.44 0.45 0.45 0.45 0.45 0.44 0.45	9.51 9.41 9.41 9.42 9.42 0.53 9.42 0.53 9.50 0.52 0.52 0.52 0.52 0.53 0.52 0.53 0.54 0.55
F4	11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	11111111111111111111111111111111111111	12.24 12.24 12.02 11.73 10.82 10.73 10.73 10.53	12.56 11.57 11.57 11.32 11.36 11.26
SWIRL ANGLE	10 90.0 11 11 10 10 10 10 10 10 10 10 10 10 10	100. 1100. 1111. 1	9 8 8 10 10 10 10 10 10 10 10 10 10 10 10 10	22222222222222222222222222222222222222
TH SPAN	22.22 6 6 5 3 3 3 3 5 3 4 3 5 5 3 5 5 5 5 5 5 5 5	7.8 44.0 23.1 15.5 44.9 30.9 30.9 4.9 55.5 61.7 65.0 84.7 84.7 84.7		2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00
PATM TAT	11 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	114.388888888888888888888888888888888888	14.38 14.38 16.38 16.38 16.38 16.38 16.38 16.38 16.38 16.38 16.38 16.38 16.38 16.38	144.35 144.35 144.35 144.35 144.35 144.35 144.35 144.35 144.35 144.35 144.35 144.35 144.35
MIDSPAN M		00000000000000000000000000000000000000		
VANE ANGLE	មាមក្រុមមាមមាមមាម	.	090000000	000000000000000000000000000000000000000
-	00000000000000000000000000000000000000	966 966 968 970 972 976	99999999999999999999999999999999999999	9996 9996 9997 10001 10001

STA	นนนนนนนนนนนน กับกับกับกับกับกับกับ	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ับบุบบุบบุบบุบบุบบุบ พพพพพพพพพพพพพพพพพพพ
Æ	00.72 00.72 00.73 00.55 00.53 00.53	00000000000000000000000000000000000000	00000000000000000000000000000000000000	00000000000000000000000000000000000000
8	88888888888888888888888888888888888888	10.55 10.55 10.53 10.53 10.53 10.66 10.66	99999999999999999999999999999999999999	00000000000000000000000000000000000000
PT	12.13 12.37 12.48 12.57 12.57 10.91 10.59 10.58 10.58	13.04 12.79 12.58 12.58 11.69 11.59 11.55 11.53 11.37	12,53 11:36 11:37 11:53 11:40 11:40 11:42 11:42 10:13	12.70 111.84 111.584 111.584 111.50 11.65 10.98
SWIRE ANGLE	11 12 12 12 12 12 12 12 12 12 12 12 12 1	9 8 8 8 8 1 1 1 1 1 1 2 8 8 8 9 9 9 9 9 1 1 1 1 1 1 1 1 1 1 1 1	200111120 11868992 11868992 128601 128601 128601 138901 139901 139001 1399001 1399001 1399001 1399001 1399001 139900 139900 139900 1390	1000 1000 1000 1000 1000 1000 1000 100
# SPAN	2012 2013 2013 2013 2013 2013 2013 2013	21212 2322 2322 2323 233 233 233 233 233	0.000 0.00 0.00 0.00 0.00 0.00 0.00 0.	98 7 98 98 98 98 98 98 98 98 98 98 98 98 98
TATM	0.000000000000000000000000000000000000	668.0 667.5 667.5 667.5 688.0 688.0	44.0.000000000000000000000000000000000	44600000000000000000000000000000000000
PATM			######################################	
MIDSPAN M#		00000000000000000000000000000000000000		6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
VANE ANGLE	15 115 115 115 115 115 115 115	0000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
<u>-</u>	1008 1009 1010 1011 1011 1012 1015 1016 1018	1022 1023 1024 1025 1026 1027 1029 1031 1031	1036 1038 1038 1038 1040 1041 1042 1044 1045 1046	1050 1051 1052 1053 1055 1055 1056 1060

STA	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5
¥	99.0	99.0	0.68	0.63	0.62	0.62	0.54	0.48	0.47	0.45	0.43	0.41
PS S	9.35	9.37	9.37	9.35	9.33	9.29	9.29	9.30	9.34	9.38	9.44	9.50
ጀ	12.50	12.73	12.71	12, 25	12.07	12.01	11.31	10.90	10.85	10.80	10.72	10.66
SWIRL ANGLE	19.1	16.6	16.6	17.7	18.6	20.4	22.2	24.0	26.1	27.0	27.6	28.5
SPAN	7.8	15.4	23.2	30.8	38.5	46.2	53.9	61.7	9.6 9	77.0	84.7	92.4
TATH	9.99	8.99	66.7	9.99	66.7	66.7	8.99	67.0	6.99	67.3	67.3	67.4
PATM	14.35	14.35	14.35	14.35	14.35	14.35	14.35	14.35	14.35	14.35	14.35	14.35
MIDSPAN M\$	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54
VANE ANGLE	15	51	15	15	15	15	15	15	15	15	15	15
-	1064	1065	1066	1067	1068	1069	1070	101	1072	1073	1074	1075

VANE ANGLE 20 MSM#= 0.28

Figure E-7. Total Pressure Profile, Station 2.5 (Phase I), PSV=200, Low Flow

VANE ANGLE 15 MSM# 0.54

re E-21. Swirl Profile, Station 2.5 (Phase I), $PSV=15^{\circ}$, Mach Number = .54, Octant 1

POSITION 2.3 VANE ANGLE= 28 MSM# 0.45

Figure E-20. Swirl Profile, Station 2.3 (Phase I), PSV=200, Mach Number = .45

POSITION 2.3
VANE ANGLE= 15
HSMF 8.45

Figure E-19. Swirl Profile, Station 2.3 (Phase I), PSV=150, Mach Number = .45

POSITION 2.3 VANE ANGLE= 10 MSM# 8.45

Figure E-18. Swirl Profile, Station 2.3 (Phase I), $PSV=10^{\circ}$, Mach Number = .45

POSITION 2.3 VANE ANGLE- 5 MSM/ 8.45

Figure E-17. Swirl Profile, Station 2.3 (Phase I), PSV=50, Mach Number = .45

POSITION 2.3 VANE ANGLE = 8 MSM# 8.45

Figure E-16. Swirl Profile, Station 2.3 (Phase I), PSV=00, Mach Number = .45

2.3 POS VANE ANGLE- 28 NSM- 8.54

Figure E-15. Total Pressure Profile, Station 2.3 (Phase I), PSV=200, Mach Number = .54

2.3 POS VANE ANGLE= 15 MSM#= R.54

Figure E-14. Total Pressure Profile, Station 2.3 (Phase I), PSV=150, Mach Number = .54

Figure E-13. Total Pressure Profile, Station 2.5 (Phase I), PSV=50, Mach Number = .54

Figure E-12. Total Pressure Profile, Station 2.5 (Phase I), $PSV=0^{\circ}$, Mach Number = .45

VANE ANGLE= 28 MSH#= 8.45

Figure E-11. Total Pressure Profile, Station 2.5 (Phase I), PSV=200, Mach Number = .45

Figure E-10. Total Pressure Profile, Station 2.5 (Phase I), PSV=15⁰, Mach Number = .45

VANE ANGLE= 10 MSM#= 0.45

Figure E-9. Total Pressure Profile, Station 2.5 (Phase I), $PSV=10^{\circ}$, Mach Number = .45

MSM#= 0.45

Figure E-8. Total Pressure Profile, Station 2.5 (Phase I), PSV=50, Mach Number = .45

VANE ANGLE = 5

VANE ANGLE= 29
MSM# 0.54

Figure E-22. Swirl Profile, Station 2.5 (Phase I), PSV=200, Mach Number = .54, Octant 1

VANE ANGLE= 28 MSM# 8.54

Figure E-23. Swirl Profile, Station 2.5 (Phase I), PSV=20^o, Mach Number = .54, Duplication

APPENDIX F

MODIFIED PRESWIRL VANE TEST PHASE II PREPARATION AND DATA

	TRANSDUCERS	JCERS		TPAVERSES	υ:
	0-1 PSID	0-5 PSID		WFDGE PROBE A	WEDGE PROCE B
Y-IN FERCE PT (PSI)	0.043	-0.004	RADIAL POS. (& SPAN)	30.8	30.5
& CHANGE DUFING DATA AQUISITICE	-0.008	0.004	& CHANGE DUPING DATA AQUISITION	-0.01	00.0
SLOPE (FSI/VOLT)	0.395	0.790	FOTATIONAL ANGLE (0=AXIAL)	18.6	27.6
% CHANGE DUPING DATA AQUISITION	-0.133	-0.058	& CHANGE DUFING DATA AQUISITION	-0.01	0.03

*** INLET PROFILE DATA ***

MIDSPAN MACH #= 0.54

TIME: 08:33:57

DATE: 03-28-83

POINT #=1409

VANE ANGLE= 29

	STATIC TAPS (PSID)	PATM-P5	4.809 4.775 0.011.
	STATIC	PATM-P4	0.727 0.713 0.003 0.723
rc.	sro)	P3-P2	0.015 -0.004 0.005 0.006
TATM= 45.6 F	WEDGE PROBE B(PSID) STA. 2.3	P1-P2	1.848 1.829 0.006 1.837
	WEDG	PATM-P1	2.849 0.006 2.836
PATM= 14.17 PSIA	(DI)	P3-P2	0.001 -0.008 0.002 -0.003
14	WEDGE PROBE A(PSID) STA. 2.5	P1-P2	2.375 2.344 0.008 2.358
	WEDG	PATK-P1	2.084 2.041 0.011 2.060
			HAX. MIN. STD DEV. AVG.

REDUCED DATA:

		9.31			
# SPAN	PT=	PS=	MACH #=	SWIRL ANGLE	
30.8	12.12	9.50	0.60	19	
& SPAN	Pſr≖	PS=	MACH #=	SWIRL ANGLE=	

PT RAKE= 11.28 MDOT= 41.3 CMDOT= 53.1 F10

Figure F-1. Modified Preswirl Vane Test (Phase II), Sample Output

FINAL TEST PLAN FOR F100 HPC INLET DUCT TEST (Modified Vanes with Increased Actuation Modified Screens) 7 March 1983

I. TEST OBJECTIVE

An F100 Series 3 High Pressure Compressor Test Article is being designed for experimentation in the Compressor Research Facility (CRF) of the Aero Propulsion Laboratory.

To perform these experiments without the fan and use the results for comparison to actual engine parameters, the entrance profiles to the high pressure compressor must be simulated. This program is designed to experimentally measure the pressure, temperature, and flow angle profiles at the exit of the test article inlet duct for comparison to measured engine profiles. In this test program, two 0.25-inch diameter wedge probes will be used to measure the temperature, total and static pressure, and flow angle profiles. They will also be used to determine the sensitivity of the flow downstream of the IGV to changes made at the 2.3 location. This test will be conducted in Building 18, Room 24, since previous experiments have shown adequate flow capacity in this facility.

II. HARDWARE

A cutaway of the inlet flow path is shown in Figure F-2. Shown in this figure are two axial locations that are available for investigation. The location shown at 2.5 duplicates station 2.5 measured in engine P072. For this reason, the primary location of profile measurements will be the 2.5 locations. Measurements will also be made at station 2.3 through the use of a second wedge probe. If time permits, the probes will be moved downstream of the IGV. The wedge probe to be used in the experiment is a United Sensor Model WT-150-24-CU/C. A schematic of the probe is shown in Figure F-3.

The wedge probe senses three pressures and one temperature. The temperature is measured by a copper constantan thermocouple from the position shown in Figure 2. P1 is proportional to the total pressure, while (P2 + P3)/2 is proportional to the static pressure. The flow angle will be determined by rotating the probe to a position where P2 - P3 = 0 and then measuring the probe's physical position (angle).

The pressures P1-Patm, P1 - P2, P1 - P3, and P3 - P2 will be recorded. The range of these readings is 0-1 psid, 0-5 psid, 0-5 psid and 0-1 psid, respectively. These same pressures will be recorded from the wedge probe positioned at the 2.3 location.

Figure F-3. Wedge Probe Schematic

During the test, the probes will be translated radially and rotated to the required positions. This operation will be controlled through a Northern Research and Engineering Corporation TEMI-3 Traversing Actuation System. Two ER1-4 traverse actuators will be used simultaneously to translate and/or rotate both wedge probes.

Additional data obtained will be Tatm and flow path ID wall static pressure (P4-Patm) and OD wall static pressure (P5-Patm).

DATA TAKING AND RECORDING REQUIREMENTS

The following is a list of steps that the data taking and recording system should follow:

- a. Rotate both wedge probes to null position.
- b. Calibrate transducers and store calibration constants for high/low calibration reference pressure.
- c. Take average, maximum, minimum, and deviation from 36 data points each of P5-Patm, P4-Patm, P1 P2, P1 P3, P2 P3, P1A P2A, P1A P3A, and P2A P3A. Take one data point of T1, Tatm, and traverses (radial and rotational) position before and after taking the raw data points.

- d. Calibrate transducers for high/low pressure again.
- e. Print the calibration constants measured after the data taking and their respective percent change from before to after data taking. Also, print out percent change of traverse positions, mean values and maximum variation of all raw data.
- f. Option to reduce printout and store the data or return to the cal-data-cal cycle above.
- g. Short form printout. Reduce data and print out the following in engineering Units:
 - Time of day to be obtained from internal clock.
 - Date have the program keep the input date until turned off.
 - Point Number
 - Values for P1-Patm, P3 P2, P1 P2, P1 P3, P1A Patm, P3A P2A, P1A P3A, P4 Patm, P5 Patm in psid
 - T1, Tatm ^OF, traverse positions, percent span and degree of rotation
 - TT, PT, PS, Mach No., swirl angle, PT/PS

h. Plot Data

As the experiment proceeds, plot out the following parameters as a function of percent span (traverse position).

Swirl angle (Station 2.5 and Station 2.3) after the traverse, plot PT/(PT average) as a function of percent span. After the test, this program will be able to access the files desired and plot out one of the curves above, or possibly plot four color-coded curves at one time.

- i. During each data point, the program must store the following on tape:
 - All individual average value points (raw data)
 - Both sets of calibration constants
 - The values printed out in the short form printout mentioned above

F100 HPC INLET DUCT TEST

TEST PLAN

It is currently estimated that four minutes will be required for each data point. The following steps are required for each data point:

- a. Set stator angle on all vanes
- b. Set flow rate to approximately 54 lb/sec and position probe at midspan. Take data point.
- c. Position the probes to the desired radial position.
- d. Rotate both wedge probes to P2 P3 and P2A P3A = 0.
- e. Take data.
- f. Print out and store data.
- g. Take 12 data points across the duct
- h. Return to midspan position and duplicate point
- i. Stop air flow
- j. Change vane angle and repeat steps b-i for each vane angle.

Vane angles to be tested

0

10

15

20

30

35

40 (if required)

50 (if required)

k. Change screens and repeat steps a-j.

Screens to be tested

Existing screens

Existing screen with add-on (screens=3)

Existing screen with cutout and with add-on (screens=4)

- 1. Move traverse to different circumferential location and repeat selected vane setting (as time permits).
- m. Move traverse downstream of IGV and determine swirl profiles for selected rane settings (as time permits)

00000000000000000000000000000000000000		00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00	0.62 0.52 0.52 0.52 0.53 0.54 0.55 0.55 0.55 0.55 0.55
90000000000000000000000000000000000000	00000000000000000000000000000000000000	0.000000000000000000000000000000000000	99999999999999999999999999999999999999
12.55 12.50 11.98 10.43 11.47 11.38 11.10 11.10	12.52 12.94 11.94 11.73 11.73 11.06 11.03	12.05 12.05 12.10 11.68 11.68 11.49 11.31 11.34	12.12 12.03 12.03 11.64 11.64 11.28 11.20 11.12
15.0 115.0 115.0 115.0 115.0 125.0 125.0 125.0 125.0 125.0	118. 107. 107. 107. 107. 107. 107. 107. 107	21.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	188 185.22 186.99 174.88 188.54 188.54 188.54 188.54 188.54
215.0 225.0 20.0 20.0 20.0 20.0 20.0 20.0	98866653	98 98 98 98 98 98 98 98 98 98 98 98 98 9	15.7 15.7 18.7 18.5 18.5 19.5 17.0 17.0
00000000000000000000000000000000000000	00000000000000000000000000000000000000	0.29 0.29 0.29 0.29 0.29	00.55 00.55 00.55 00.33 00.33 00.33 00.33
9.82 9.99 9.98 10.00 10.00 10.00 10.03 10.03	9.833 9.991 9.991 9.993 9.96 9.96 10.00	10.19 10.19 10.19 10.19 10.19 10.19 10.19 10.19	10.19 10.27 10.33 10.29 10.30 10.30 10.31 10.36 10.36
112.337	11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	100.83 100.83 100.83 100.83 100.83 100.83 100.83 100.83 100.83	12.36 11.12.83 11.12.83 11.12.83 11.13.00 11.13.00 11.33
112.2 112.2 112.2 113.5 113.6 113.6 122.2 122.2 123.3	1112 1113 1113 1113 1113 1113 1113 1113	70.2 70.0 70.0 70.0 70.0 70.0 70.0	99.1 100.0 100.0 100.0 100.0 100.0
7.5 10.23 30.29 30.49 60.34 60.99 1.49 1.49 1.49	25 20 20 20 20 20 20 20 20 20 20 20 20 20	N N N N N N N N N N N N N N N N N N N	12.0 12.0 22.9 30.5 38.1 45.7 76.2 83.8 91.8
**************************************	6 6 6 7 8 8 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	44444444444 00000000000000000000000000	44444444444 N.Y.O.O.C.O.O.O.O.O. N.O.O.O.O.O.O.O.O.O.O.O.O.O.
14.20 14.20 14.20 14.20 14.20 14.20 14.20 14.20	14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19	14.19 14.19 14.19 14.19 14.19 14.19 14.19 14.19	114.26 114.26 114.26 114.26 114.26 114.26 114.26 114.26
00000000000000000000000000000000000000	0.51 0.51 0.51 0.51 0.51 0.51	000000000000000000000000000000000000000	
25 21 25 21 25 21 25 21 25 21 25 21 25 21 25 21 25 21 25 21 25 21 25 21 25 25 25 25 25 25 25 25 25 25 25 25 25	155 155 155 155 155 155 155 155 155 155	0000000000	0000000000
10049 10080 10080 10080 10080 10080 10080 10080	1092 1093 1094 1095 1096 1097 1100 1100	1106 11008 11109 11111 11112 11114 11116	1119 1120 1121 1123 1124 1125 1126 1128 1129

		0.66 0.66 0.58 0.53 0.52 0.46 0.46 0.44	0.60 0.53 0.58 0.58 0.58 0.54 0.48 0.48 0.48	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	600 000 000 000 000 000 000 000 000 000	99999999999999999999999999999999999999	0.000000000000000000000000000000000000
	12.29 12.26 11.06 11.09 11.09 11.09 11.12 11.12	12.87 12.56 11.89 11.89 11.54 11.25 11.06 11.01	12.16 12.06 11.87 11.87 12.05 11.05 11.25 11.26 11.26 11.26 11.26	12.53 12.54 12.54 11.75 11.65 11.65 11.59 11.59 11.59 11.59 11.59
	17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0	17.2 16.8 19.0 19.0 21.1 24.8 24.8 27.2 27.2 26.8	18.9 17.9 17.2 15.8 15.8 15.9 17.7 20.5 23.2 26.3	199. 199. 199. 199. 199. 199. 199. 199.
	8.1 15.5 30.3 38.5 54.0 69.3 69.3 69.3	15.7 23.1 23.1 23.0 56.8 56.5 661.6 67.0 984.0	7.7 15.4 23.1 23.1 38.5 46.5 61.6 69.3 92.4	15.7. 23.7.2. 330.8 330.8 533.7.2 611.6 92.4 62.10
:	0.55 0.58 0.57 0.57 0.40 0.36 0.35 0.35	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.60 0.60 0.56 0.56 0.34 0.34 0.34 0.34	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
;	9.86 10.03 10.09 10.09 10.08 10.08 10.09 10.10	9.84 9.89 9.94 9.94 9.96 10.00 10.01 10.03 10.03 10.10	9.70 9.77 9.77 9.78 9.82 9.83 9.86 9.86	00000000000000000000000000000000000000
:	12.15 12.58 12.56 12.56 11.23 11.03 11.06 11.02	12.63 12.64 12.064 11.63 11.41 11.23 11.07 11.05 11.05	12.71 12.42 12.11 11.91 11.61 11.30 11.03 11.03 11.03 11.74	11.88 11.98 12.34 12.53 12.18 11.76 11.30 11.07 11.07
335 AN 180	14.99 14.99 14.49 17.1 19.6 23.3 23.3 25.0	18.3 17.2 17.2 18.3 21.2 24.9 26.2 29.5 31.6	20.54 22.33.7 22.8.22.8 22.2.8 23.7.2 29.2 33.0 34.8 34.8	26.1 23.5 23.5 24.1 27.3 29.1 30.4 33.7 40.5
10 F F F F F F F F F F F F F F F F F F F	7.6 22.3 322.9 30.5 53.6 61.0 61.0 91.8	7.7 22.9 30.5 30.5 38.1 45.7 61.0 61.0 61.0	7.00 22.00 3.00 3.00 5.00 5.00 5.00 5.00 5.00 5	7.6 122.9 22.9 30.5 38.1 45.7 45.7 61.0 68.6 91.4
E	50.3 51.0 51.0 50.7 52.5 52.5 52.3 52.3	556 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00	<u>ቀ</u> ቁ ቁ ቁ ቁ ቁ ቁ ቁ ቁ ቁ ቁ ቁ ቁ ቁ ቁ ቁ ቁ ቁ ቁ ቁ
E1 67	14.28 14.28 14.28 14.28 14.28 14.28 14.28 14.28	14.28 14.28 14.28 14.28 14.28 14.28 14.28 14.28	14.26 14.26 14.26 14.26 14.26 14.26 14.26 14.26 14.26	14,30 14,30 14,30 14,30 14,30 14,30 14,30 14,30 14,30
DIUDYAN A	00000000000000000000000000000000000000	0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52		00000000000000000000000000000000000000
VANE ANGLE	000000000000000000000000000000000000000	155 155 155 155 155 155 155	700 700 700 700 700 700 700 700 700 700	25 25 25 25 25 25 25 25 25 25 25 25 25 2
2	1133 1134 1135 1136 1136 1140 1140 1141 1143	1148 1148 1150 1151 1151 1153 1154 1156 1156	1161 1162 1163 1164 1165 1166 1167 1168 1169 1170	1175 1176 1177 1177 1178 1180 1181 1183 1184

ž	00000000000000000000000000000000000000	00.00 00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.60 0.56 0.56 0.57 0.53
e Li	99999999999999999999999999999999999999	ᲓᲓᲓᲓᲓᲓᲓᲓᲓ ᲓᲚᲓᲥᲥᲥᲥᲥᲡᲓ ᲒᲓᲮᲝᲥᲥᲥᲥᲥᲡᲡᲓᲮ	9.69 9.71 9.71 9.75 9.88 9.88 9.88 9.92	9.61 9.71 9.61 9.61 9.66
Z	12.17 12.05 12.05 12.19 12.16 11.75 11.60 11.37 11.29	11.92 12.06 12.06 11.99 11.99 11.82 11.59 11.24 11.24 11.08	12.34 12.52 12.52 12.56 12.66 12.06 11.72 11.72 11.33	12.26 12.52 11.89 12.69 12.06 12.30
SWIFL ANGLE	25.00 25.00	222 200.9 200.9 200.9 200.9 200.9 200.9 200.9 200.9 200.9	21.0 118.6 118.6 120.0 220.5 224.4 224.6 25.7 25.8	19.0 18.6 17.5 19.0 15.8 20.2
&S PAN	7.828.83.83.83.83.83.83.83.83.83.83.83.83.83	7.000 7.000 7.000 7.000 7.000 7.000 7.000 7.000 7.000	2212 2212 2322 2412 2413 2413 2413 2413	7.8 23.1 30.8 38.5 53.9
Σ	00000000000000000000000000000000000000	0.67 0.70 0.72 0.67 0.65 0.58 0.58	0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
PS	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	88.88 8.88 8.99 9.99 9.20 9.20 9.30 9.30	99.584 99.73 99.73 99.882 09.988	9.80 9.58 9.73 9.77
ŗ.	12.25 12.25 12.28 11.01 11.40 11.25 11.25 11.25	11.80 12.25 12.25 12.46 12.46 11.99 11.80 11.37 11.09 11.09	12.17 12.02 12.00 11.00 11.71 11.41 11.40 11.40 11.40 11.33	12.77 12.02 12.22 12.00 11.71 11.49
SWIRL ANGLE	280.2 290.0 200.0 331.2 35.3 36.0 4.8	23333333333333333333333333333333333333	22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	220.00 21.00 22.30 27.30 27.30
#SPAN	15.2 22.2 22.5 30.5 30.5 545.7 60.9 60.9 1.8	15.3 20.5 30.5 38.1 485.1 66.9 66.9 91.8	7.7 15.3 122.9 30.5 38.1 83.3 68.6 68.6 91.8	15.3 222.9 30.5 38.1 53.8
TATM	44444444444444444444444444444444444444	449.9 49.9 51.5 50.6 51.7 51.7 51.6 51.7 51.7	5886095555555555555555555555555555555555	60.9 58.5 60.5 57.9 60.2
PATM	4444 4444 4444 4444 4444 4444 4444 4444 4444	11 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1144.30 1144.30 1144.30 1144.30 1144.30 1144.30	14.30 14.30 14.30 14.30 14.30 14.30
MIDSPAN M#				0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
VANE ANGLE		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	2222222222 777777777777777777777777777	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Ž.	11189 11191 11192 11193 11196 111996	1203 1204 1206 1206 1206 1209 1210 1211 1213	1217 1218 1218 1220 1221 1222 1223 1225 1226	1231 1232 1233 1234 1235 1236

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	.0.00 .00 .0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	00000000000000000000000000000000000000
\$\phi \phi \phi \phi \phi \phi \phi \phi		99999999999999999999999999999999999999	00000000000000000000000000000000000000
12.00 11.94 11.77 11.62 11.45 11.07 10.94 10.96	12.24 12.18 12.13 11.99 11.66 11.66 11.09 10.89 10.76 10.76	12.69 12.69 12.24 11.63 11.31 11.25 10.96 10.78 10.66	12.00 12.00 12.00 12.00 11.75 11.06 10.79 10.79
1166.3 11	17.8 16.5 18.9 18.9 18.0 20.5 22.2 23.6 28.6	17.1 17.0 17.0 19.0 22.0 22.0 22.4 22.4 22.4 29.7	18. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10
15.4 23.1 30.6 330.6 56.2 69.3 77.0 924.7	7.7 15.4 23.1 30.8 38.5 38.5 61.6 69.3 67.0	7.1.2.2.2.2.2.2.2.3.3.3.3.3.3.3.3.3.3.3.3	7 1 2 2 3 3 3 3 5 4 7 7 7 7 8 9 8 8 9 9 9 9 9 9 9 9 9 9 9 9
0.33 0.33 0.33 0.33 0.33 0.33 0.33	.0000000000000000000000000000000000000	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	00.55 00.55 00.55 00.35 00.36 00.36
0.22 0.22 0.22 0.20 0.20 0.20 0.20 0.20	9.80 9.96 10.03 10.03 9.98 9.95 10.01 10.01 10.04	9.72 9.74 9.74 9.77 9.82 9.88 9.88	99999999999999999999999999999999999999
12.70 12.70 12.28 11.68 11.68 11.26 11.00 11.00 11.00 11.00 11.00	11.35 12.45 12.25 11.26 11.86 10.87 10.87 10.91 10.91	12.74 11.85 11.85 11.26 11.26 10.98 10.88 10.88 10.88	12.57 12.30 11.90 11.60 11.05 10.89 10.87 10.87 10.59
7.3 7.3 7.2 6.7 8.0 10.4 113.1 115.9 115.9	15.1 14.4 14.3 115.8 117.9 22.0 224.2 24.2 24.2	18.5 17.5 18.4 18.4 20.2 25.2 26.3 20.3 30.0	20.0 20.0 20.1 22.7 22.3 22.3 39.3 39.3 39.3
98.17 98.17 98.17 98.17 98.17 98.17 98.17 98.18	7.7 15.3 20.5 30.5 38.1 45.7 68.6 68.6 91.8	7.6 22.9 30.5 38.1 38.1 61.0 68.6 68.6 91.8	7.6 12.2 12.2 13.0 13.0 13.0 13.0 13.0 13.0 13.0 14.0 14.0 15.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16
, , , , , , , , , , , , , , , , , , ,	522.52 522.22 522.32 522.9 522.9	55 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	444 4004 1004 1006 1006 1006 1006 1006 1
114,009 1009 1009 1009 1009 1009 1009 1009 1009 1009	114.09 144.09 144.09 144.09 144.09 14.09 14.09	144.08 144.08 144.08 144.08 144.08 144.08 144.08 144.08	14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02
52222222222222222222222222222222222222	00000000000000000000000000000000000000		000000000000000000000000000000000000000
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	100 100 100 100 100 100	15 15 15 15 15 15 15	00000000000000000000000000000000000000
12339 11249 11249 11243 11244 11244 11246 11246 11246	1252 1253 1254 1254 1255 1255 1259 1260 1261 1262	1266 1266 1268 1268 1270 1271 1272 1274 1275	1280 1281 1282 1283 1284 1285 1286 1289 1289

(PSI)	& CHANGE DATA AQUI	SLOPE (PSI/VOLT)	* CHAL			25	. 9			MAX. MIN. STD DE	REDUCE	
•	& CHANGE DURING DATA AQUISITION	ĵ.	* CHANGE DURING DATA AQUISITION							DEV.	REDUCED DATA:	
,	-0.010	0	0					WEDC	PATM-P1	0.000		% SPAN PT= PS= MACH # SWIRL
! ;	010	0.398	0.004			POINT		WEDGE PROBE A(P STA. 2.5	P1-P2	0.000		* SPAN 17 PT= 14 PS= 14 MACH #= 0 SWIRL ANGLE= 34
)))	0.001	0.791	0.007	4:	VANE ANGLE=	T == 0	PATM= 14.59	PSID)	P3-P2	0.000		7.1 4.59 0.00
				*** INLET PRO	0	DATE: 09	PSIA		PAT	i.o.i.		
(& SPAN)	& DA	ROTATIONA (0=AXIAL)	& Q	PROFILE DATA	MIL	09-01-83	TATM=	WEDGE	PATM-P1	-1.005 -1.006 0.000 -1.005		<pre>% SPAN PT= PS= MACH #= SWIRL ANGLE</pre>
AN)	CHANGE TA AQUI	ROTATIONAL ANGLE (0=AXIAL)	CHANGE TA AQUI	* * *	MIDSPAN MACH	TIME: 10:07:15	?M= 80.5 F	WEDGE PROBE B(PSID) STA. 2.3	P1-P2	1.005 1.004 0.000 1.004		20.4 15.60 14.49 0.33
	DURING	ယ္	DURING		#= 0.54	:07:15	_	(018	P3-P2	0.000		4 60 33 33
	-0.00	33.8	0್.0−						C4			
	0	20	0					STATIC TA	PATM-P4	0.000		
	00.0	20.1	00.0-					TAPS (PSID)	PA'IM-P5	0.000		

PT RAKE= 14.5 ADOT= 0.3 CMDOT= 0.3

Figure G-5. Data System End-to-End Check, 1 Psi on PlB

A _	2	ብ	3	n
~~	_	u	J	u

# CHANGE DURING 0.005 # CHANGE DURING 0.00 0.00 DATA AQUISITION 0.398 0.791 ROTATIONAL ANGLE 33.8 20.1 (PSI/VOLT) (0=AXIAL) CHANGE DURING 0.00 0.00 ACHANGE DURING -0.014 0.022 BATA AQUISITION 0.00 0.00	(PSI)			(a SPAN)			
0.398 0.791 ROTATIONAL ANGLE 33.8 (0=AXIAL) E DURING -0.014 0.022 % CHANGE DURING 0.00 UISITION	CHANGE DURING DATA AQUISITION	0.005	0.005	& CHANGE DURING DATA AQUISITION	00.00	00.0	
-0.014 0.022 % CHANGE DURING 0.00 DATA AQUISITIÓN	SLOPE (PSI/VOLT)	0.398	0.791	ROTATIONAL ANGLE (0=AXIAL)	33.8	20.1	
	\$ CHANGE DURING DATA AQUISITION	-0.014	0.022	% CHANGE DURING DATA AQUISITION	00.0	00.0	

* CHANGE DURING DATA AQUISITION	0.003		600.0	9	DATA AQUISITION	TION	•	5	
LOPE PSI/VOLT)	0.398		0.791	ROTA (0=A	ROTATIONAL ANGLE (0=AXIAL)	ធ	33.8	20.1	-
& CHANGE DURING DATA AQUISITION	-0.014		0.022	** C	% CHANGE DURING DATA AQUISITION	RING TION	00.0	o	00.0
			* *	INLET PROFILE DATA	A ***				
			VANE ANGLE=	0 M	MIDSPAN MACH	#= 0.54			
		POINT	0 ± # LV	DATE: 08-31-83	TIME: 1	15:37:48			
			PATM= 14.59	PSIA TA	TATM= 83.0	Œ.			
	WEDGE PROBE A(PSID) STA. 2.5	PROBE A STA. 2.5	(PSID)	WEDGE	WEDGE PROBE B(PSID) STA. 2.3	SID)		STATIC TA	TAPS(PSID)
	PATM-P1	P1-P2	P3-P2	PATM-P1	P1-P2	P3-P2	Д	PATM-P4	PATM-P5
MAX. MIN. STD DEV. AVG.	-5.036 -5.036 -5.036 -5.036	5.004 5.003 0.000 5.004	000.0	000000	000000000000000000000000000000000000000	0.000	1	0.000	0.000
REDUCED DATA:									
	% SPAN PT= PS= MACH #= SWIRL ANGLE=		17.1 19.64 14.11 0.70	% SPAN PT= PS= MACH #= SWIRL ANGLE	II	20.4 14.59 14.59 0.00			
PT RAKE= 14.59 .4DOT= 0.4 CMDOT= 0.4			Figure G-4. [Data System End-to-End Check, & Psi on	nd. Check, \$ F	si on PIA			

Y-INTERCEPT (PSI)	0.052		-0.003	RAD (8:	RADIAL PCS. (% SPAN)	17	17.1	20.4	O 1 - L 0 0
& CHANGE DURING DATA AQUISITION	0.002		0.002		% CHANGE DURING DATA AQUISITION		-0.00	-0.02	
SLOPE (PSI/VOLT)	0.398		0.791	ROT (0=.	ROTATIONAL ANGLE (0=AXIAL)		33.8	20.1	
% CHANGE DURING DATA AQUISITION	0.010		0.019	·	% CHANGE DURING DATA AQUISITION		-0.00	00.0-	
			INI ***	INLET PROFILE DATA	TA ***				
			VANE ANGLE=	Σ 0	MIDSPAN MACH	#= 0.54			
		POINT	0 ==	DATE: 09-01-83	TIME: 09:	:55:55			
			PATM= 14.59 Pt	PSIA	TATM= 80.4 F				
	WEDGE PROF	PROBE A(PSI TA. 2.5	PSID)	WEDGE	E PROBE B(PSID) STA. 2.3	(D)	STATIC	TAPS(PSID)	
	PATM-P1 P	P1-P2	P3-P2	PATM-P1	P1-P2	P3-P2	PATM-P4	PATM-P5	
	-3.019 3 -3.020 3	3.008	0.000	0.000	0.000	0.000	0.000	000000000000000000000000000000000000000	
		. 008	0.000	000	000.0-	0000	0.000	0000	
REDUCED DATA:									
	% SPAN PT= PS= MACH #= SWIRL ANGLE=		17.1 17.61 14.29 0.55	% SPAN PT= PS= MACH # SWIRL	PT= 14.59 PX= 14.59 PS= 14.59 MACH #= 0.00 SWIRL ANGLE= 20	4 20 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
PT RAKE= 14.59 MDOT= 0.5 CMDOT= 0.5			Figure 6.3 Dat	Data Avetom End.to.End Check		8 pc : 20			

Figure G-3. Data System End-to-End Check, 9 Psi on PlA

Y-IMICECEPT (PSI)	5¢	-0.003	RADIAL POS.	17.1	20.4
% CHANGE DURING DATA AQUISITION	0.003	0.001	& CHANGE DURING DATA AQUISITION	-0.00	0.01
SLOPE (PSI/VOLT)	98 °C	0.791	ROTATIONAL ANGLE (0=AXIAL)	33.8	20.1
& CHANGE DURING DATA AQUISITION	-0.004	0.014	& CHANGE DURING DATA AQUISITION	-0.00	00.0-

*** INLET PROFILE DATA ***

			STATIC TAPS (PSID)	PATM-P5	0.000	0.000		
			STATIC TA	PATM-P4	0.000	0.0000		
#= 0.54	0:00:22	C Ł	SID)	P3-P2	0.000	0.000		20.4 14.59 14.59 0.00
MIDSPAN MACH #= 0.54	TIME: 10:00:22	TATM= 80.4 F	WEDGE PROBE B(PSID) STA, 2,3	P1-P2	0.000-	0000-0-		NG LE
IW	DATE: 09-01-83	TA	WEDGE	PATM-P1	-0.000	0.000		* SPAN • PT= PS= MACH #= SWIRL A
VANE ANGLE= 0	0 DATE:	PATM= 14.59 PSIA		P3-P2.	0.000	0.000		
VANE	POINT #=	PAILM	WEDGE PROBE A(PSID) STA. 2.5	P1-P2	1.005			17.1 15.60 14.49 0.33 LE= 34
			WEDGE PR	PATM-P1 P	-1.005 1 -1.006 1			* SPAN PT= PS= MACH #= SWIRL ANGLE=
					MAX. MIN.	STD DEV. AVG.	REDUCED DATA:	

PT RAKE= 14.59
MDOT= 0.4
CMDOT= 0.4

Figure 6-2. Data System End to End Check, 1 Pci em PIA

ſR−	84-203	0												
E PROBE B	20.4	0.01	20.1	00.0						TAPS (PSID)	PATM-PS	0.0000		
WEDGE	7		7							SPATIC I	bd-M.I∀d	0.000 0.000 6.000 0.000		
WEDGE PROBE A	17.1	0.01	33.8	0.00			54	0		to.	-P2	0.000 0.000 0.000 0.000 0.000		
•		JRING	31.5	JRING			H #= 0.54	00:00:00	F±4	s B(PSID)	P3.	, , , , , , , , , , , , , , , , , , ,		20.4 14.43 14.43 0.00
	RADIAL POS. (8 SPAN)	& CHANGE DURING DATA AQUISITION	ROTATIONAL ANGLE (0=AXIAL)	% CHANGE DURING DATA AQUISITION		TA ***	MIDSPAN MACH	TIME: (TATM= 82.7	PROBE STA. 2	P1-P2	0.000.0		3 CER =
	RAD (8		RON (0)			PROFILE DATA	×	01-01-83	H	aboaw ,	PATM-P1	0.00.00.00.00.00.00.00.00.00.00.00.00.0		** Q Q Q X X X X X X X X X X X X X X X X
						INLET	0	DATE:	3 PSIA					
0-5 PSID	-0.001	0.004	0.791	0.012	•	*	VANE ANGLE=	0 = #	PATM= 14.43	(919)	P3-P2	0.000		जि.ठ. ; আजाककार कि.क. कि.क. जि.क. कि.क.
	'						-	POINT #	ц.	08E A(PSI	P1-P2	0.000 0.000 0.000 0.000		
0-1 PSID	0.057	0.011	0.398	-0.008						WEDGE PROBE SIA. 2.	ijΨ	3 000		SPAG PT= PS= PA = PE
·o	•										PATM-P1	000000000000000000000000000000000000000		* 9 7 2 2 2 2 4 2 4 2 4 2 4 2 4 4 4 4 4 4 4
	Y-IM FENCEPT (PSI)	% CAANGE DURING DATA AQUISITION	SLOPE (PSI/volt)	& CHANGE DUKING DATA AQUISITION								SAX. SIV. SVO DEV. AVO.	ASDUCED DATA:	

yure 6-1. Data System Zene Assist End-to-End Check

APPENDIX G

MODIFIED PRESWIRL VANE TEST PHASE III PREPARATION AND DATA

```
JS: INC 019 DD "nome"

JS: INC 1 = 1 to 3;950 "step"

JS: next I;wt 709, "SIAC2";wt 722, "H";fxd 3

JR: next I;wt 709, "SIAC2";wt 722, "H";fxd 3

JS: sed 722,r30;r30Q[2,2]+Q[1,2]+r31;P-r31+r32

JS: 558.4r32(P/r32)"(1/7) 4(((P/r32)^*.2857-1)/(T+460))+r33

JS: 558.4r32(P/r32)"(P/r32)";pp -2

JS: 558.4r32(P/r32)"(P/r32)";pp -2

JS: 558.4r32(P/r32)"(P/r32)"(P/r32)"(P/r32)"(P/r32)

JS: 558.4r32(P/r32)"(P/r32)"(P/r32)"(P/r32)"(P/r32)

JS: 55.45.L[1,1];7-L[2,1];22.58+L[1,2];14.7+L[2,2];19.97+L[1,3];22.7+L[2,3]

JS: 55.45.L[1,1];7-L[2,1];7-L[2,1];75.64-L[1,1];76.54-L[1,6];76.54-L[2,1]

JS: 20.23.L[1,1];18.3.4-L[2,1];25.55+L[1,1];75.54-L[2,1]

JS: 20.33.L[1,1];18.3.7-L[2,1];25.55+L[1,1];75.54-L[2,1]

JS: 28.34-L[1,1];47.1-L[2,1];77.48-L[1,1];730.37-L[1,1];730.37-L[1,1];730.37-L[1,1];730.37-L[1,1];730.37-L[1,1];77.2+L[2,1];77.2+L[2,2];84.8+L[2,2]

JS: 40.1+L[1,2];77.2+L[2,2];36.81+L[1,2];84.8+L[2,2]

JS: 35.11+L[1,2];77.2+L[2,2];36.81+L[1,2];84.8+L[2,2]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       164: line 2:plt L[1,1], L[2,1], 1
165: for I=2 to 12:plt L[1,1], L[2,1], 1
165: for I=2 to 12:plt L[1,1], L[2,1], 1
165: for I=2 to 12:plt L[1,1], L[2,1], L[2,1], L[2,1]
165: plt 50,-30,-2:plt 53,-30,-1:plt 54,-30,0;lbl "2.5 PoS. (ENG. P072)"; pen
167: line 5:plt L[1,1], L[2,1], L[2,1]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  T[] +A[1,1];S[] +A[2,1];M[] +A[3,1];F[3,6] +A[4,1];P[] +A[5,1]

Y[9,2] +A[6,1];Y[2,2] +A[7,1];Y[1,2] +A[8,1];P-A[9,1];T-A[10,1]

T[2] +A[11,1];S[2] +A[12,1];M[2] +A[13,1];F[3,8] +A[14,1];P[2] +A[15,1]

Ent 0;Wrt 705, "ipl256,3480,6629,9451"

Scl 50,80,0,100;if figl;gto 182

Wrt 705, "SM";pen# 1

csiz 1.7,1.5;Wrt 705, "VS5";fxd 0;xax 0,5,50,80,1;yax 50,10,0,100,2

"BACKGROUND PLOTS":
                          fmt 24x, SWIRL ANGLE=",f4.0,22x,"SWIRL ANGLE=",f4.0,/
wrt 6,F[3,6],F[3,8]
fmt 1,3x,"PT RAKE=",f7.2;wrt 6.1,P-Y[9,2]
fmt 1,3x,"MDOT=",f9.1;wrt 6.1,r55
fmt 1,3x,"CMDOT=",f8.1,11/;wrt 6.1,r56
fmt 0,dsp "CONTINUE TO STORE";stp
N+rl00;trk 0;N-1377+0;rcf 0,R[*],Z[*],P[*],P,N,T,B,C;gto 141
"ON LINE STATIC TAP PRESS.";
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     wrt 705, "SM";csiz 1.7,1.5;penf lifxd l;xax 0,.1,0,.7,1
fxd 0;yax 0,10,0,100,2;sfg l;csiz 2.2,1.8;penf 3
ANGLE ..., f4.0,22x, "SWIRL ANGLE ..., f4.0,/
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           wrt 705, "SM+";90-p[3,8]+r60;plt r60,P[2],1;jmp 5 pen# l;wrt 705, "SM";plt r50,r51,1;wrt 705, "SMo" 90-p[3,6]+r50;plt r50,p[1],2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                wrt 705,"SM";plt r60,r61,1;wrt 705,"SM+"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            for I=1 to 23;90-L[1,I]+L[1,I];next I
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               P[1]+r51;P[2]+r61;pen# ; sfg l;gto 134
scl 0,.7,0,100;ofs l.129,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          90-F[3,8]+r60;plt r60,P[2],2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                90-F[3,6]+r50;plt r50,P[1],1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             int (P[1]/7.7+.5) +I
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              141:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              140:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                185:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     184:
```

(F[2,L]-F[1,L])*100/F[1,L]+F[5,L]

```
62: || (R[2,1] - R[1,1]) + O[2,1]; || (R[3,1] - R[4,1]) + O[3,1] || 63: 5/(R[2,2] - R[1,2]) + O[2,2]; || 5/(R[3,2] - R[4,2]) + O[3,2] || 64: -R[1,2] - O[1,2] + O[2,2]; || 5/(R[3,2] - R[4,2]) + O[3,2] || 64: -R[1,2] - O[1,2] - O[1,2] - O[4,2] + O[4,2] || 64: -R[1,2] + O[2,2] + O[2,2] - O[1,2] - O[4,2] + O[3,2] + O[4,2] || 64: -R[1,2] + O[4,2] + O[4,2] + O[4,2] || 64: -R[1,2] + O[2,2] - O[4,2] + O[2,2] - O[4,2] + O[2,2] - O[4,2] + O[2,2] - O[
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               wrt 6,rl,r2,P[5,5],F[5,7]
fmt 3x,"DATA AQUISITION",/;wrt 6
fmt 3x,"DATA AQUISITION",/;wrt 6
fmt "SLOPE",f26.3,f15.3,18x,"ROTATIONAL ANGLE",f12.1,f15.1
wrt 6,Q[2,1],Q[2,2],P[3,6],P[3,8]
fmt "(PSI/VOLT)",54x,"(0=AXIAL)",/;wrt 6
fmt 3x,"% CHANGE DURING",f13.3,f15.3,21x,"% CHANGE DURING",f11.2,f15.2
wrt 6,r3,r4,F[5,6],P[5,8]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   wrt 6.1,A$,Y[5,1],Y[4,1],Y[10,1],Y[8,1],Y[7,1],Y[11,1],Y[2,1],Y[1,1]
fmt 2,z,3x,"STD DEV.",f14.3,2f12.3;wrt 6.2,X[5,4],Y[4,4],Y[10,4]
fmt 2,2x,3f12.3,2x,2f12.3;wrt 6.2,Y[8,4],Y[7,4],Y[11,4],Y[2,4],Y[1,4]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  wrt 6.1,A$,Y[5,2],Y[4,2],Y[10,2],Y[8,2],Y[7,2],Y[11,2],Y[2,2],Y[1,2]
fmt /,3x,"REDUCED DATA:",/;wrt 6
fmt 24x,"% SPAN",f12.1,20x,"% SPAN",f12.1;wrt 6,P[1],P[2]
fmt 24x,"PT=",f16.2,19x,"PT=",f16.2;wrt 6,T[1],T[2]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       wrt 6.1, AS, x[5,3], Y[4,3], X[10,3], X[8,3], X[7,3], Y[11,3], X[2,3], X[1,3]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          00: 558.4r57(P/r57) (1/7) {(((P/r57)^.2857-1)/(T+460))+r55
01: .6401r57((T+460)/(P-Y[9,2])+r56
01: .6401r55√(T+460)/(P-Y[9,2])+r56
02: fmt 47x,"*** INLET PROFILE DATA ***",2/;wrt 6
03: fmt 40x,"VANE ANGLE=",f4.0,5x,"DATE:",c6,"-83",5x,"TIME:",c9
04: fmt /,35x,"POINT #=",f4.0,5x,"DATE:",c6,"-83",5x,"TIME:",c9
05: fmt /,40x,"PATM=",f6.2," PSIA",10x,"TATM=",f6.1," F",2/
07: wrt 6,P,T
08: fmt 25x,"WEDGE PROBE A(PSID) ",19x,"WEDGE PROBE B(PSID)",z;wrt 6
09: fmt 14x,"STATIC TAPS(PSID) ",wrt 6
10: fmt 30x,"STA. 2.5",30x,"STA. 2.3";wrt 6
11: fmt /,19x,"PATM-P1",6x,"P1-P2",7x,"P3-P2",8x,"PATM-P1",z;wrt 6
12: fmt 6x,"P1-P2",7x,"P3-P2",8x,"PATM-P1",z;wrt 6
13: fmt 1,3x,c4,f18.3,2f12.3,2x,3f12.3,2x,2f12.3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 for L=1 to 2;s[L]+0[L]+T[L];/(5((T[L]/S[L])^.2857-1))+M[L]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      3x, "DATA AQUISITION", 49x, "DATA AQUISITION", 5/; wrt
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   [1, 1] Q[2,1] +Q[1,1] +Y[1,L]; next I; next L
for I=1 Q[2,1] +Q[1,4] Q[2,2] +Y[1,4]; next I
for I=10 to 11; \frac{7}{2}[1,4] Q[2,1] +Y[1,4]; next I
(Y[3,2] +Y[4,2])/2H+O[1]; (Y[6,2] +Y[7,2])/2H+O[2]
-Y[5,2] -O[1]G+P+S[1]; -Y[8,2] -O[2]G+P+S[2]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 for L=1 to 3;for I=1 to 9
Z[I,L]Q[2,2]+Q[1,2]+Y[I,L];next I
for I=10 to 11
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  "CONTINUE?"; stp
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          next L;P-Y[2,2]+r57
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       .998+G; .905+H
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     "DATA RED.":
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             "MIN." +AS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     "AVG." +AS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               fint
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  fnt
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     dsp
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    998: f
999: n
1000:
1001:
1002:
1004:
1005:
1007:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         118:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  119:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     112:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        120:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            :60
                                                                                                                                                                                                                                                                                                                                                                                                  6643
                                                                                                                                                                                                                                                                                                                                                                  20:
```

CACALI DI PASSORER MADOLOGICO EN COSORIGO EN

THE REPORTER OF THE SAME

PHASE II COMPUTER PROGRAM LISTING

```
"step":wrt 709,"DC1,3";wait 50;wrt 709,"DO1,3";V+1+V;wait 200;jmp 2
"home":wrt 709,"SI","DC1,4";wait 100;wrt 709,"DO1,4";wait 9000;0+V
red 3,U,D;if U=480;0+U
0: "CRF F100 PSV TEST IN RM 24,3rd SET SCREENS; 3/18/83":
1: dim E[2,4:8,5],H[3:4,36],R[4,3],Z[11,4],F[5,4:8],P,N,T,B,C
2: dim C$[1],S[2],Q[4,2],T[2],O[2],N[3],M[2],C[0:1,5:8],Y[11,4]
3: dim P[2],A$[4],T$[14],B$[12],A[15,12],L[2,24]
4: "TD**B$;ent "DAIE & TIME",B$[3];wrt 709,B$
5: -.0578+C[0,7];--4188+C[1,7];71.45+C[0,6];111.3099+C[1,8]
6: -.054222-C[0,5];--413503+C[1,5];71.45+C[0,6];111.338+C[1,6];7000+W
7: cfg 1;ent "Patm?",Q,"MIDSPAN MACH #?",B,"VANE ANGLE?",C
8: ent "POINT NO.2",N;dsp r100,N
9: fmt 0;0*.491,B*P
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     "scand":wrt 722, "HSM002LlRS136STN.1STIM2T3QX1"
rds(722)+S;if S#66;jmp 0
"stat":wrt 722, "REM";red 722, Z[1,2];wrt 722, "REL";red 722, Z[1,1]
wrt 722, "REU";red 722, Z[1,3];wrt 722, "REU";red 722, Z[1,4]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          for A=1 to 2;for L=4 to 8;0+E;for J=1 to 5;E[A,L,J]+E+E next J;E/5+P[A,L];next L;next A
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    Ç
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             for L=4 to B;wrt 709,"ASVNSSOlVPlVSlVT3VS";for J=1 red 709,E[A,L,J];next J;next L if I=1;wrt 709,"TD";red 709,T$
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         rds(722)+S;if S#66;jmp 0
wrt 722,"REM";red 722,R[I,K];if K=l;jmp
if I=l;l+A;gsb "EE"
if I=4;2+A;gsb "EE"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          wrt 709, "Acl";1+K;jmp 2
wrt 709, "Ac2";2+K
wrt 722, "HSM002L1RS130STN.1STIM2T3QX1"
                                                                                                                                                                                                                                                                                                                                                                                                                                 for J=1 to 9;J+1;9sb "step"
wait w.wrt 709,"AC2";9sb "scan0"
if J=3;10+1;wrt 709,"AC1";9sb "scanD"
if J=6;ll+1;wrt 709,"AC1";9sb "scanD"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    if V#U/10;dsp "SCANIVALVE ERROR";stp
if U=0;dsp "HOME";ret
if U>0;dsp U/10;ret
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      "RERUN": fmt 1,38/;wrt 6.1;gto 9
                                                                                                                                                                                                                                                                   fid 0:9sb "home" red 713,T;if T<32;beep;ent T for I=1 to 2;if I=2;9sb "step"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         F(1, L) *C(1, L) +C(0, L) +F(3, L)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   "EE": wrt 709, "SIARAF4AL8"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  for I=3 to 4;gsb "step"
                                                                                                                                                                                                                                                                                                                                                                          wait 3000;gsb "scanc"
                                                                                                                                                                                                                                                                                                                                                       if I=2; wait W-3000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           next I,gsb "step"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          sfg 14;9to 54
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               for L=5 to 8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      gsb "scanC"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      gsb "stat"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  EEA VG":
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     scanc":
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              wait W
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              next J
                                                                                                                                                                                                                                                                                                                                                                                                         next I
                                                                                                                                                                                                                                                                                                                                                                                                                                      ..
19:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            222::222:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 29:
30:
31:
```

							TABLE F-1 (Concluded)	Conclude	=						
Ē	STA.2.5 OCTANT	VANE	CORRECTED PASS FLOW	A .	TATE	\$ SPAN	STATION SWIPL ANGLE	N 2.3	PS	÷ E	\$ SPAN	STATION SWIRL ANGLE	2.5 PT	S S	÷ E
;	,	ć	, ,	*	9	7.8	30.1	12.44	9.44	0.64	7.8		11.73	9.57	0.55
7057		N (3 ·	•	. 4	15.	27.0	12.20	9.48	0.61	15.5		12.10	9.65	0.58
1463		67	3 • •		47.4	22.9	28.5	12.09	9.48	0.60	23.2	19.4	12.27	9.70	0.59
* 0 * 1		6 7 ^	. •	7 7 7	47.4	30.5	28.5	11.58	9.53	0.54	30.8		12.39	9.76	0.59
0001) (7 7 7	46.8	38,1	26.2	11.47	9.55	0.52	38.6		12.35	9.78	0.59
0047		7 0	. . .	7 6 . 6	47.3	45.7	29.6	11.45	9.60	0.51	46.3		12.19	6.77	0.57
7 7 7		6 0	9.5	14.46	47.8	53.4	35.0	11.43	9.65	0.50	53.9		11.78	9,75	0.53
0077		0	54.0	16.44	47.0	61.0	36.9	11.29	9.68	0.47	61.7		11.27	9.79	0.45
7007				14.46	47.0	9.89	37.8	11.20	9.72	0.45	69.3		11.08	9.80	0.42
		0	2.4.5	14.44	47.6	76.2	38.2	11.13	9.16	0.44	77.0		11.06	9.81	0.42
111			5.A.	34.46	67.9	83.8	36.2	11.06	9.85	0.42	84.7		11.13	9.89	0.41
1473	, ~	6.7	54.0	14.4	47.3	91.5	34.6	11.14	9.88	0.42	92.4		11.24	9.96	0.42
7.4.4			0	77.71	16.1	7.7	29.7	12.48	9.46	0.64	7.8	23.2	12.35	9.61	0.61
14.0				14.44	47.6	15,3	27.8	12.22	9.48	0.61	15.5	21.4	12.25	9.65	0.59
147				14.44	50.6	22.9	28.6	12.14	9.51	0.60	23.2	19.9	12.31	9.68	0.60
1470				14.44	49.7	30.5	27.8	11.61	9,55	0.53	30.8	19.0	12,34	9,73	0.59
7 4 4 0				14.44	47.9	38.1	26.3	11.50	9.58	0.52	38.6	18.5	12.29	9.74	0.59
7 4 5				14.44	47.6	45.8	30.2	11.49	9.64	0.51	46.2	19.1	12.30	9.78	2.58
7487				14.44	47.6	53.4	33.9	11.45	9.68	0.50	54.0	21.1	12.12	20.0	9.50
7 7 7 7				14.44	46.9	61.0	37.6	11.33	9.74	0.47	61.7	23.7	11.75	20°	15.0
7404				14.44	47.4	68.6	37.8	11.22	9.16	0.45	69.4	25.4	11.47	9.87	0.47
1011				14.44	48.4	76.2	37.6	11.16	9.80	0.44	77.0	25.4	11.28	9.86	0.44
1486				14.44	48.4	83.8	36.7	11.11	9.87	0.41	84.8	23.7	11.17	9.92	0.42
1427	o o	20	24.0	14.44	47.3	91.5	35.2	11.15	9.91	0.41	92.5	22.9	11.10	66.6	0.39
,															

Σ	00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	00000000000000000000000000000000000000	0.59 0.59 0.58 0.58 0.58 0.58 0.58 0.58
S d	\$\circ{0}{0}\circ{0}\circ{0}\circ{0}{0}\circ{0}\circ{0}{0}\circ{0}\circ{0}{0}\circ{0}\circ{0}{0}\circ{0}\circ{0}{0}\circ{0}	000000000000 	64.000000000000000000000000000000000000	99.68 99.68 99.73 99.73 99.73 99.85
2.5 PT	12.10 12.02 12.02 12.10 12.03 12.03 11.45 11.02 10.92	12.04 11.98 11.98 11.88 11.58 11.58 10.92 10.92 10.77	12.25 12.42 12.42 12.28 12.21 12.00 11.58 11.23 11.23 11.08	12.46 12.42 12.42 12.15 12.15 12.19 11.31 11.38 11.28 11.28
STATION ;	222 11.1 118.6 118.6 118.6 23.3 23.2 23.2 23.5 23.5 23.5	21.2 19.9 19.0 19.6 20.4 21.5 23.1 23.7 29.4 29.4	22. 20.3 19.1 19.1 20.3 25.9 25.9 25.9	22.0 18.9 18.9 20.7 20.7 20.7 20.1 30.1 20.1
&S PAN	23.5 23.5 23.5 33.3 33.9 43.0 661.6 67.0 68.7	115.5 233.2 233.2 330.9 546.3 661.4 661.4 67.0	7.8 23.2 23.2 23.2 24.0 24.0 24.0 24.0 26.1 26.1 26.1 26.1 26.1 26.1 26.1 26.1	7 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Σ	00000000000000000000000000000000000000	0.000000000000000000000000000000000000	0.000.000.000.000.000.000.000.000.000.	0.000000000000000000000000000000000000
b _S	00000000000000000000000000000000000000	60000000000000000000000000000000000000	00000000000000000000000000000000000000	00000000000000000000000000000000000000
4 2.3	12.17 11.93 11.85 11.26 11.26 11.20 11.08 10.98 10.93	12.15 11.92 11.83 11.36 11.24 11.20 11.20 10.99 10.99	12.46 12.21 12.21 11.59 11.48 11.44 11.30 11.21 11.15 11.06	12.46 12.21 12.21 11.58 11.48 11.46 11.46 11.30 11.30 11.05
STATION SWIRL ANGLE	30.1 26.9 27.6 27.6 26.9 34.0 34.0 37.8 37.8	229 227 227 227 239 339 339 339 339 339 339 339 339 339	22222 22222 2222 2222 33333 3333 3333	22723 2773 28627 28657 3977 3977 8977 8977
&SPAN	225.33 225.33 330.59 545.7 661.0 661.0 762.2 83.8	7.7 15.3 122.9 30.6 38.1 53.3 61.0 68.6 68.6 93.8	7.7 15.3 22.9 30.5 30.5 45.7 61.0 61.0 68.6 76.2	7.7 15.3 122.9 30.5 30.5 45.8 45.8 61.0 61.0 61.0
TATM	44444444444444444444444444444444444444	44444444444 0.0.0.0.0.0.4.4.4.6.0.0 0.0.0.0.0.0.0.0.0.0.0 0.0.0.0.0.0	66 66 66 66 66 66 66 66 66 66 66 66 66	4 4 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
PA TM	144.17 144.17 144.17 144.17 144.17 144.17 144.17	14.17 14.17 14.17 14.17 14.17 14.17 14.17 14.17	44444444444444444444444444444444444444	
CORRECTED MASS FLOW	00000000000000000000000000000000000000	00000000000000000000000000000000000000	00000000000000000000000000000000000000	00000000000000000000000000000000000000
VANE ANGLE	00000000000000000000000000000000000000	00000000000000000000000000000000000000	00000000000000000000000000000000000000	00000000000000000000000000000000000000
STA.2.5 OCTANT#	∞ 30 ∞ 30 ∞ 70 ∞ 70 ∞ 70 ∞			
ž	1406 1407 1407 1408 1410 1411 1413 1416 1416	11422 14422 14423 14424 14426 14426 14426 1430	11848384 11848384 11848386 118484386 11848483368 1184848 11848 118488 11848 118488 118488 118488 118488 118488 118488 118488 118488 118488 118488 118488 118488 118488 118488 118488 118488 118488 118488 11848 118488 118488 118488 118488 118488 118488 118488 118488 1184	14444 14444 1455 1455 1455 1455 1456 1456

	£	0.60 0.60 0.59 0.57 0.57 0.57 0.54 0.44 0.44	0.58 0.58 0.59 0.57 0.57 0.55 0.37	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
	8	99999999999999999999999999999999999999	9.95 9.98 10.03 10.05 10.05 10.07 10.12 10.11 10.11 10.22	9.56 99.57 99.58 99.52 99.60 99.60 77.70	9.22 9.22 9.22 9.33 9.33 9.33 9.34 9.35
	1 2.5 PT	12.33 12.26 12.16 12.04 12.08 12.08 11.92 11.63 11.22 11.09	12.56 12.54 12.74 12.71 12.31 12.39 12.10 11.73 11.57	12.29 12.60 12.37 11.32 11.32 11.28 11.28 11.39 11.39 11.05	11.88 11.76 11.58 11.64 11.76 11.45 11.45 11.45 11.00 10.90
	STATION SWIRL ANGLE	23.1 20.6 20.6 119.1 18.1 20.9 22.9 22.9 22.9	22.2.2.0.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	20.5 19.4 19.2 20.0 20.0 23.9 26.7 26.1 29.9	23.5 20.0 20.0 117.9 117.9 26.7 26.8 25.3 23.5
	& SPAN	7.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00	7.7 115.4 23.1 23.1 30.8 30.8 53.9 61.6 61.6 61.6 92.4	7.7 115.4 23.1 33.8 38.8 38.8 53.9 61.6 61.6 62.4 92.4	7.7 115.4 23.1 38.5 38.5 53.0 61.7 61.7 92.4
	¥	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.53 0.55 0.55 0.51 0.51 0.44 0.43 0.43	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.68 0.059 0.55 0.55 0.55 0.65 0.65 0.65 0.65 0.65
	PS	00000000000000000000000000000000000000	9.85 9.98 9.92 9.92 10.01 10.05 10.15	9.60.00.00.00.00.00.00.00.00.00.00.00.00.	9.00 9.00 9.00 9.10 9.20 9.20 9.20 9.33
(Cont'd)	10N 2.3 E PT	12.58 12.33 12.33 11.41 11.45 11.45 11.45 11.45 11.31 11.31 11.31 10.94	12.51 12.30 12.22 11.86 11.87 11.56 11.51 11.45 11.45	11.89 12.04 12.03 12.28 12.32 11.33 11.14 11.06 11.09 11.11	12.25 11.99 11.96 11.52 11.26
TABLE F-1	STATI SWIRL ANGLE	30. 288. 288. 288. 34. 33. 33. 34. 37. 37.	30.1 27.1 27.3 25.4 32.5 36.4 36.4 36.4	2222 2222 223.5 223.5 33.5 33.5 33.5 34.3 36.0 37.0	30.28.9 30.1.1.3 330.6 330.1.1.3 386.0 38.6
	& SPAN	222 222 222 222 232 233 24 26 233 24 24 25 26 26 26 26 26 26 26 26 26 26 26 26 26	7.5.6 222.0 222.0 23.0 611.0 611.0 613.0 6	15.7 15.7 16.7 16.7 16.7 16.7 16.7 16.7 16.7 16	7.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 1
	TATM	200 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	044848999999999999999999999999999999999	37.0 37.0 37.0 37.0 37.0 37.0 38.0 38.0 38.0 39.0 39.0 39.0 39.0 39.0 39.0 39.0 39	36.73 37.22 37.22 37.20 37.20 36.20 36.23 36.23 36.55
	PATM			20000000000000000000000000000000000000	1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
	MIDSPAN M#		0.000.000 0.000.000 0.000.000 0.000 0.000	00000000000000000000000000000000000000	000000000000 00000000000000 000000000
	VANE ANGLE	~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	255 255 255 255 255 255 255 255 255 255	000000000000000000000000000000000000000
	ž	1350 1351 1352 1353 1354 1356 1356 1358 1359 1360	1364 1365 1366 1366 1368 1370 1372 1372 1373	1378 1379 1380 1381 1383 1384 1386 1386 1386	1392 1393 1393 1394 1396 1397 1398 1399 1400 1401

TABLE F-1 (Cont'd)

# E	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.60 0.63 0.63 0.53 0.53 0.53 0.53 0.53	0.000 0.000 0.000 0.58 0.58 0.59 0.59 0.64 0.64	00.00 00
PS	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	99.00 99.00 99.00 99.00 99.00 99.00	99999999999999999999999999999999999999	0000000000000
N 2.5 PT	112.33 111.844 111.844 111.20 111.20 111.20 111.23 111.15 10.84	12.20 12.33 12.33 12.38 12.09 11.90 11.79 11.61	11.97 11.92 11.84 11.75 11.84 11.56 11.29 11.04 10.86	11.96 12.04 12.13 12.13 12.05 12.03 11.70 11.28 11.04 10.92
STATION SWIRE ANGLE	199.8 200.8 200.8 200.8 200.8 300.9 6	2011.9 2011.9 2011.9 2011.2 2011.2 2011.2 2011.2 2011.3 20	22.09 20.17 20.17 18.0 18.0 20.2 23.8 25.9 25.9	22222222222222222222222222222222222222
8 SPAN	7 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	7 4 1 1 2 2 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4	7.7 115.4 23.1 330.8 330.8 53.9 61.6 67.0 64.7	115.7 23.1 23.0 23.0 54.0 661.6 67.0 68.7
** E	00.58 00.50 00.50 00.50 00.50 00.50 00.50 00.50	0.59 0.55 0.55 0.55 0.65 0.45 0.44 0.43	0.64 0.64 0.58 0.53 0.53 0.53 0.54 0.47	0.67 0.73 0.73 0.72 0.56 0.58 0.55
ьS	99999999999 1, 999999 1.0084444466 0.00810449	$\frac{0}{2}$	99.104 99.104 99.106 99.20 99.33 99.33	8.73 8.73 8.74 8.96 9.05 9.05 9.15
ATION 2,3	11.61 11.80 12.08 12.08 11.80 11.180 11.160 10.75 10.75	12.02 11.84 11.78 11.76 11.36 11.36 11.13 11.13 11.13	12.27 12.03 12.03 11.47 11.07 11.12 10.99 10.87 10.55	11.82 12.634 12.62 12.62 12.62 11.92 11.91 11.91 11.01
STAT SWIRL ANCL	255.7 222.7 223.2 223.2 30.1 32.0 33.0 33.0	299.00 209.00 209.00 209.00 31.00 31.00 31.00 31.00 31.00	33 33 33 35 55 56 56 56 56 56 56 56 56 56 56 56 56	35.11 30.12 30.12 30.12 30.33 41.33 41.33
&SPAN	0.000	7.6 115.2 125.2 30.5 30.5 438.1 68.6 68.6 68.6 91.8	7.7 15.0 22.9 30.5 30.5 38.1 53.3 61.0 68.6 68.6 91.8	7.6 115.2 22.8 30.8 30.4 53.4 60.9 60.9 91.8
TATM	33333388888888888888888888888888888888	00000000000000000000000000000000000000	33 33 33 35 35 35 35 35 35 35 35 35 35 3	332.3 332.3 332.3 332.5 332.5 332.5
PATM	10000000000000000000000000000000000000	14.07 14.07 14.07 14.07 14.07 14.07 14.07 14.07	14.07 14.07 14.07 14.07 14.07 14.07 14.07 14.07 14.07	44444444444444444444444444444444444444
MIDSPAN M#	00000000000000000000000000000000000000	00000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
VANE ANGLE	22222222222222222222222222222222222222	22222222222222222222222222222222222222		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
PI	1294 1295 1296 1297 1298 1300 1301 1303 1304	1308 1309 1310 1311 1312 1314 1315 1318 1318	1322 1323 1324 1325 1326 1328 1328 1333 1333 1333 1333	1336 1338 1338 1338 1338 1338 1348 1348 1348

TRAVERSES

	TRANSDUCERS	ICERS		TRAVERSES	S
	0-1 PSID	0-5 PSID		WEDGE PROBE A	WEDGE PROBE. B
Y-INTERCEPT (PSI)	0.053	-0.000	RADIAL POS. (* SPAN)	17.1	20.4
* CHANGE DURING DATA AUDISITION	0.004	0.005	<pre>\$ CHANGE DURING DATA AQUISITION</pre>	00.0	00.0
SLOPE (PSI/VOLT)	0.398	0.791	ROTATIONAL ANGLE (0=AXIAL)	33.8	20.1
& CHANGE DURING DATA AUJISITION	900 -0-	0.013	% CHANGE DURING DATA AQUISITION	00.0	00.0

*** INLET PROFILE DATA ***

			VANE ANGLE=	0	MID	MIDSPAN MACH #= 0.54	#= 0.54		
		POINT #=	0	DATE: 08-31-83	31-83	TIME: 15:42:25	:42:25		
		-	PATM= 14.59 PSIA	PSIA	TAT	TATM= 83.0 F			
	WEDC	WEDGE PROBE A(PS STA. 2.5	(PSID)		WEDGE	WEDGE PROBE B(PSID) STA. 2.3	10)	STATIC	STATIC TAPS(PSID)
	PATM-P1	P1-P2	P3-P2	PATM-P1	-P1	P1-P2	P3-P2	PATM-P4	PAT4-P
XAX	0.000	000000	000.0	-5.0	35	5.003	000.0	000.0	000.0
N-X	-0.000	-0.000	-0.000	-5.036	36	5.002	-0.000	-0.000	0.000
STD DEV	0.000	00000	0.000	0.00	00	0.000	000.0	000.0	0.000
AVG.	000.0	00000	-0.000	-5.0	36	5.003	000.0-	000.0	0000
REDUCED DATA:									
			,			6	•		

20.4	19.63	14.11	0.10	20
& SPAN	PT≖	PS=	MACH #=	SWIRL ANGLE=
17.1	14.59	14.59	0.00	34
& SPAN	PT=	PS=	MACH #=	SWIRL ANGLE=

PT RAKE= ADOT= CMDOT=

Nata System End-to-End Check, \$ Psi on PlB Figure G-6.

	TRANSDUCERS	JCERS		TRAVERSES	S
	0-1 PSID	0-5 PSID		WEDGE PROBE A	WEDGE PROBE B
Y-INTERCEPT (PSI)	0.053	-0.000	RADIAL POS. (% SPAN)	17.1	20.4
& CHANGE DURING DATA AQUISITION	0.004	0.005	& CHANGE DURING DATA AQUISITION	00.0	00.0-
SLOPE (PSI/VOLT)	0.398	0.791	ROTATIONAL ANGLE (0=AXIAL)	33.8	20.1
% CHANGE DURING DATA AQUISITION	-0.001	0.022	% CHANGE DURING DATA AQUISITION	00.0	00.0

*** INLET PROFILE DATA ***

MIDSPAN MACH #= 0.54

TIME: 16:05:53

DATE: 08-31-83

POINT #=

VANE ANGLE=

TATM= 83.1 F

PATM= 14.59 PSIA

	WEDGE	WEDGE PROBE A(I	(PSID)	WEDG	WEDGE PROBE B(PSID) STA. 2.3	B (PSID) 3	STATIC TO	STATIC TAPS(PSID)
	PATM~P1	P1-P2	P3-P2	PATM-P1	P1-P2	P3-P2	PATM-P4	PATM-PS
MAX.	0.000	0.000	1.000	0.000	000.0		000.0	000.0
NIN.	-0.000	-0.000	1.000	0.000	0000		000.0	000.0
STD DEV.	0.000	0.000	0000	0.000	0.000		00000	000.0
AvG.	000.0	00000	1.000	000.0	0.000	0.000	00000	0.000
REDUCED DATA:								
	& SPAN	~	17.1	& SPAN	z	20.4		
	P.I.=		14.59	₽.T.d.		14.59		
	₽S≖		15.14	₽S=		14.59		
	MACH #	<u></u>	0.23	MACH #=	11	00.00		
	SWIRL	SWIRL ANGLE=	34	SWIRL	SWIRL ANGLE=	20		

14.59	15.14	0.23	34				
PT=	PS=	MACH #=	SWIRL ANGLE=				
				14.59	0.5	0.5	
				PT RAKE≈	ADOT=	CMDOT=	

Figure G-7. Data System End-to-End Check, 1 Psi on P3A

TRANSDUCERS			TRAVERSES WENGE PRORF A	S WEDGE PROBE B
U-1 FOID U-3 FOID			מבחקב בעסבר ע	
0.053 -0.000 RADIAL P (* SPAN)	RADIA (* SP	RADIAL POS. (* SPAN)	17.1	20.4
0.004 0.003 & C	8 C DAT	% CHANGE DURING DATA AQUISITION	00.0	0.01
0.398 0.791 'ROTATIONAI (0=AXIAL)	ROTATI (0=AXI	ROTATIONAL ANGLE (0=AXIAL)	33.8	20.1
0.024 8 C	& C DAT	& CHANGE DURING DATA AQUISITION	00.00	00.0

*** INLET PROFILE DATA ***

MIDSPAN MACH #= 0.54

0

VANE ANGLE=

		STATIC TAPS (PSI	PATM-P4 P7P5	0.000 0.000				
5:51:20	G		P3-P2 PA	0 866.0				
TIME: 15:51:20	TATM= 83.1 F	WEDGE PROBE B(PSID) STA. 2.3	P1-P2	0.00.0	-0.000	0.000	-0.000	
DATE: 08-31-83		WEDGE	PATM-P1	0.000	-0.000	0.000	000.0	
#= 0 PATM= 14.59		PSID)	P3-P2	000.0	-0.000	00000	0.000	
POINT		WEDGE PROBE A(PS	P1-P2	000.0	-0.000	0.000	-0.000	
		WEDG	PATM-P1	000.0	-0.000	0.000	-0.000	
				.1AX.	MIN.	SID DEV.	AVG.	REDUCED DATA:

	17.1	14.59	14.59	00.0
	& SrAN	PT=	PS≖	MACA HA
ED DATA:				

& SrAN	17.1	& SPAN	
PT=	14.59	PT≖	
PS≖	14.59	PS≖	
MACH #=	00.00	MACH #=	•
SWIRL ANGLE=	34	SWIRL ANGLE=	

14.59 0.6 0.6 PT RAKE= MDOT= CMDOT=

Data System End-to-End Check, 1 Psi on P3B ffgure G-8.

THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF

このなって、日本のでは、日本には、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本には、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日

	TRANSDUCERS	ICERS		TRAVERSES	S
	0-1 PSID	0-5 PSID		WEDGE PROBE A	WEDGE PROBE B
Y-INTERCEPT (PSI)	0.052	-0.002	RADIAL POS.	17.1	20.4
& CHANGE DURING DATA AQUISITION	000.0-	0.003	& CHANGE DURING DATA AQUISITION	00.00	-0.02
SLOPE (PSI/VOLT)	0.398	0.791	ROTATIONAL ANGLE (0=AXIAL)	33.8	20.1
& CHANGE DURING DATA AQUISITION	0.005	0.004	% CHANGE DURING DATA AQUISITION	00.0-	-0.00

*** INLET PROFILE DATA ***

MIDSPAN MACH #= 0.54

VANE ANGLE= 0

		STATIC TAPS(PSID)	PATM-P4 PATM-P5	0.000 0.000				
TIME: 10:32:37	ít.	SID).	P3-P2	0.000	000.0	000.0		20.4 14.59 14.59 0.00
TIME: 1	TATM= 80.7 F	WEDGE PROBE B(PSID). STA. 2.3	P1-P2	0.000	000.0	000.0		= ANGLE=
DATE: 09-01-83		WEDGE	PATM-P1	0000-0-	0000	000.0-		% SPAN PT= PS= MACH #= SWIRL A
0	PATM= 14.59 PSIA	PSID)	P3-P2	000.0	0.000	000.0		17.1 14.59 14.59 0.00
POINT		WEDGE PROBE A(P: STA. 2.5	P1-P2	00000	000.0	0.000		* ANGLE=
		WEDGI	PATM-P1	00000	000.0	000.0		\$ SPAN PT* PS* MACH # SWIRL
				MAX.	STD DEV.	AVG.	REDUCED DATA:	

15.59	•	4
RAKE=	IDOT=	OT=
PT	N DO	TOUND

Figure G-9. Data System End-to-End Check, 1 Psi on PT Rake

	TRAN	TRANSDUCERS			TRAVERSES	SES	
	0-1 PSID	0-5 PSID			WEDGE PROBE A	WEDGE PROBE	ROBE B
Y-intercept (PSI)	0.052	-0.002	RAD (%	RADIAL POS. (8 SPAN)	17.1	20.4	
& CHANGE DURING DATA AQUISITION	0.001	0.001		& CHANGE DURING DATA AQUISITION	00.00	-0.01	
SLOPE (PSI/VOLT)	0.397	0.791	ROT (0=	ROTATIONAL ANGLE (0=AXIAL)	33.8	20.1	
% CHANGE DURING DATA AQUISITION	-0.008	0.003		% CHANGE DURING DATA AQUISITION	00.0	00.0	0
		* *	INLET PROFILE	DATA ***			
		VANE ANGLE=	0	MIDSPAN MACH #= 0	0.54		
		POINT #= 0	DATE: 09-01-83	TIME: 10:37:4	46		
		PA'IM= 14.	59 PSIA T	TATM≈ 80.8 F			
	WEDGE PROS	PROBE A(PSID) TA. 2.5	WEDGE	E PROBE B(PSID) STA. 2.3	Ø	STATIC TAPS (PSID	(PSID)
	PATM-P1 P1	P1-P2 P3-P2	PATM-P1	P1-P2 P	P3-P2 PA	PATM-P4' E	PATM-P5
MAX. MIN. STD DEV. AVG.	0.0000	0.000 -0.000 0.000 0.000 0.000 0.000	000.0	0 000.0	0.000	0.000	000000000000000000000000000000000000000
REDUCED DATA:							
	<pre>\$ SPAN PT= PS= MACH #= SWIRL ANGLE=</pre>	17.1 14.59 14.59 0.00	& SPAN PT= PS= MACH # SWIRL	N 20.4 14.59 14.59 4= 0.00 ANGLE= 20			•
PT RAKE= 17.61 MDOT= 0.2 CMDOT= 0.1		Fīgure G-10. Data	Data System End-to-End Check, 3 Psi on PT Rake	ck, 3 Psi on PT Rak	41		

TABLE G-7 MODIFIED PRESUIRL WANE TEST PHASE 111 DATA

Ī	0.52 0.52 0.52 0.52 0.52 0.53	00.50 00.50 00.50 00.50 00.50 00.50 00.50 00.50	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	000000000000000000000000000000000000000
8	88888888888888888888888888888888888888	9.89 9.83 9.83 9.83 9.85 10.11 10.11	10.00 10.025 10.025 10.02 10.04 10.08 10.11 10.13	9.75 9.88 9.89 9.89 9.89 9.88 10.01 10.01
v.E	2.08 2.23 2.23 2.23 2.23 2.23 2.24 2.25 2.25 2.25 2.25 2.25 2.25 2.25	112.47 112.32 112.34 111.60 111.63 111.63 111.63 111.63	22.22.88 22.22.23 22.22.23 22.22.23 22.22.23 22.22.23 22.22.23 22.22.23 22.23.23 22.23.23 22.23.23 23.23 23.23 23.23.23 23.23.23 23.23.23 23.23.23 23.23.23 23.23.23 23.23.23 23.23.23 23.23.23	12.38 12.57 12.57 12.70 11.90 11.66 11.70
ANGLE	аяяяяааааа	•		
STAT SWIRL AN	18. 11.2.5. 11.2.5. 12.2.1.2. 22.1.5.4.5.	16.74 113.77 116.55 116.55 127.50 127.50 127.50 127.50	15.77 15.8 15.8 16.3 16.3 24.0 24.0 24.0 25.6	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
SPAN	23.2 23.2 23.2 24.2 24.0 24.0 24.0 24.0	7,7 118.2 123.1 14.6 15.0 16.0 17.0 17.0 17.0	7.20 2.30 2.30 2.30 2.30 2.4.0 9.30 9.30 9.30	115.4 23.3.4 330.3.4 46.2 54.2 661.6 92.3 661.6 92.1 74.1
æ E	0.56 0.56 0.53 0.53 0.45 0.43 0.41	0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00	0.58 0.58 0.52 0.45 0.45 0.41 0.41	00000000000000000000000000000000000000
PS	9.69 10.10 10.16 10.16 10.26 10.16 10.16 10.27 10.27	10.10 10.16 10.16 10.18 10.25 10.31 10.32 10.32 10.39	10.21 10.38 10.38 10.38 10.38 10.32 10.33 10.34 10.42	9.88 9.99 10.14 10.12 10.18 10.22 10.22 10.33
2.3	11.98 12.23 12.23 11.23 11.24 11.33 11.56 11.56	12.09 11.35 11.36 11.36 11.36 11.38 11.41 11.41 11.63	12.69 12.73 12.52 12.15 11.80 11.92 11.98 11.79 11.68 11.68	12.17 12.93 13.16 12.91 12.91 11.73 11.52 11.38 11.36
STATION SWIRL ANGLE	122.0974222	12 9.73 10.6 11.0.6 11.18 12.1.18 12.1.18 185	15.7 13.2 13.2 15.6 15.6 23.2 23.2 23.3 23.1	18.4 115.9 115.9 115.9 27.0 29.2 29.2 20.2
US PAN S	117. 122.3 222.3 380.5 583.2 583.2 583.2 583.2 583.2 583.2 583.2	222.36 222.36 23.37 23.5.2 23.5.3 23.5.6 23.5.6 23.5.6	7.66 22.3 30.5 30.5 53.7 68.6 68.6 98.8	22.02 22.03 22.03 23.03 23.03 20.03
TATM	88 88 88 88 88 88 88 88 88 88 88 88 88	68.3 71.6 71.6 72.5 72.6 73.9	75.5 75.7 76.3 76.9 77.5 78.0 78.7 79.6	866.0 866.1 866.1 866.7 866.7 87.0 87.1 87.1 87.5 87.5
PATM		144.337 144.337 144.337 144.337 144.337 144.337	114.44 11	14.37 14.37 14.37 14.37 14.37 14.37 14.37 14.37
COBRECTED MASS FLOW		00000000000000000000000000000000000000	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
VANE	0000000000	000000000000000000000000000000000000000	155 155 155 155 155 155 155 155	000000000000000000000000000000000000000
STA.2.5 OCTANT	***************************************	ക ഹാ ഗാ യാ നാ നാ നാ നാ നാ നാ	ග න න න න න න න න න න න	20 00 00 00 00 00 00 00 00 00
Ē	1546 1547 1548 15548 1555 1555 1555 1555 1555	1560 1561 1562 1563 1564 1568 1569 1570	1574 1575 1576 1577 1578 1580 1581 1582 1583	1588 1589 1580 1590 1592 1598 1598 1598

148LE G-1 (Cont'4)	

	65556666666666666666666666666666666666	080000m10rrs	0 10000040000	2 8 8 8 8 9 0 0 8 8 8 P
×	00000000000		00000000000000000000000000000000000000	
S	9.88 9.91 10.00 10.02 10.00 10.14 10.15	9.88 9.86 9.86 9.99 9.89 9.89 9.89	9.80 9.80 9.80 9.80 9.80 9.80	9.89 10.03 10.05 9.95 9.92 9.97 9.99 9.97
2.5 T	12.62 12.63 11.08 11.08 11.08 11.08 11.05 11.05 11.05	2222222 222222 22244 2244 22444 22444 22444 22444 2	2.07 2.23 2.23 2.05 2.08 2.08 1.65 1.65 1.51	2.87 2.57 2.57 2.21 1.87 1.84 1.78 11.78 11.78
ANGLE				
STA1 SWIRL AN	22222222222222222222222222222222222222	118 118 119 119 119 119 119 119 119 119	25.5.5.8 2.5.5.8 2.5.5.5 2.5.5.5 2.5	119. 119. 110. 110. 110. 110. 110. 110.
\$S PAN	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7.23 23.57 23.57 24.03 24.03 24.00 25.00 25.00	115.4 115.4 123.1 138.3 138.3 146.5 147.0 147.0 147.0	7.7 15.4 23.1 30.8 38.5 38.5 53.9 61.6 69.3 77.0
¥	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	00000000000000000000000000000000000000	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	000 000 000 000 000 000 000 000 000 00
PS	9.91 10.00 10.00 10.00 10.10 10.16 10.24 10.24	9.91 9.75 9.83 9.98 10.01 9.99 10.05 10.05	99999999999999999999999999999999999999	9.96 0.02 0.02 0.17 0.17 0.20 0.20 0.39
7.5	200 20 20 20 20 20 20 20 20 20 20 20 20	25.73 60 70 70 70 70 70 70 70 70	117 192 193 193 193 193 193 193 193 193 193 193	. 18 . 50 . 05 . 05 . 05 . 1 . 75 . 1 . 75 . 1 . 75 . 1 . 75 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1
STATION 2 Angle				
STAT SWIRL ANG	2011 2022 2023 2023 2023 2023 2023 2023	23. 20. 20. 20. 30. 30. 30. 30. 30. 30. 30. 30. 30. 3	300 300 300 300 300 300 300 300 300 300	21.00 20.00 20.00 20.00 33.00 20.00
SPAN S	7.0.00 0.		L4004000004	
181	2022004600000	2222 3322 344 362 448 661 661 661 661 661	7 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	9 8 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
TATH	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	22.73.64.09.785.1 33.27.386.4	ຎຑຑຓຑຑຑຑຑຑຑ ຑຑ ຩຑຆຑຑຑຑຑ ຒ⇔ຩ	046608844008
		8LLLLLLLLL		00000000000000000000000000000000000000
PATM			44444444444444444444444444444444444444	44444444444444444444444444444444444444
TED	0000000000			
CORRECTED MASS FLOW	4444444444	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N N N N N N N N N N N N N N N N N N N	00000000000000000000000000000000000000
VANE ANGLE	ស្លាសស្លាសស្លាស្លាស	222222222	ក្សាស្តីស្តីស្តីស្តីស្តីស្តីស្តីស្តីស្តីស្តី	
	444444444	МММЙМЙЙЙЙЙЙЙ		000000000000
STA.2.5 OCTANT#	@ @ @ @ @ @ @ @ @ @		 	10 00 00 00 00 00 00 00 00 00 00
£	1602 1603 1603 1603 1600 1610 1611 1613	1616 1617 1618 1619 1620 1621 1623 1624 1625	1630 1631 1631 1633 1634 1636 1638 1640 1641	16444 16445 16446 16447 16449 1651 1651 1653 1653

R-84-2030								
×	0.59 0.55 0.55 0.55 0.55 0.50 0.50 0.48	0.58 0.55 0.55 0.55 0.50 0.50 0.50 0.50	0.58 0.53 0.53 0.53 0.53 0.54 0.56 0.56 0.56 0.56	0.61 0.59 0.53 0.53 0.53 0.48 0.48 0.45 0.45	YES SEET.			
S.	9.96 9.91 9.83 9.89 9.99 9.90 10.01	9.87 9.86 9.86 9.86 9.88 9.83 10.03	9.88 9.82 9.71 9.77 9.77 9.88 9.86 9.87 10.01	9.83 9.79 9.90 9.98 9.99 9.99 10.13				
. Ta	12.82 12.50 12.12 12.27 12.30 11.99 11.71 11.71 11.71 11.84 11.84	12.44 12.33 12.15 11.74 11.59 11.62 11.68 11.68 11.73	12.38 11.99 11.78 11.80 11.80 11.68 11.52 11.57 11.53 11.53	12.64 12.43 12.24 12.01 12.00 11.97 11.89 11.53 11.53				
SWIRL ANGLE	19.6 16.9 16.9 17.6 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3	16.0 14.0 13.6 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	19.9 17.6 115.9 17.6 22.0 27.7 27.7 27.1 27.1	188.64 18.00	4			
SPAN	7.7.7.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8	L 11 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	7.000 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	7. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10				
* E	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.56 0.56 0.56 0.52 0.44 0.44 0.45 0.43	0.555 0.555				
PS	9.93 10.07 10.20 10.20 10.28 10.25 10.25 10.13 10.31	10.14 10.12 10.30 10.25 10.27 10.29 10.25 10.25 10.34	9.90 9.84 9.85 9.93 9.99 9.98 10.08 10.08 10.14	9.95 9.95 9.95 9.98 10.05 10.13 10.17 10.13				
2.3 PT	12.15 12.95 12.95 12.64 11.70 11.50 11.54 11.50 11.50	12.07 12.53 12.53 11.87 11.53 11.34 11.34 11.34 11.34	12.10 12.14 12.24 11.91 11.59 11.57 11.57 11.66	12.15 12.23 12.23 12.35 11.55 11.75 11.79 11.68 11.68				
STATION SWIRL ANGLE	20.4 115.4 115.4 116.8 27.5 33.2 23.2 27.5 27.5	12.1 9.6 9.7 11.0 12.0 12.0 12.0 221.9 18.8	21.6 11.6 10.7 10.7 19.7 19.7 34.4 33.7 229.2	211.5 10.66				
SSPAN	7.7 225.2 225.9 386.1 545.7 661.0 661.0 983.8	7.6 115.3 22.3 30.5 30.1 83.3 68.6 68.6 68.6 93.8	7.7 13.3.3 30.3.6 38.1 4.8.1 53.4 68.6 68.6 91.9	7.7 202.9 302.9 302.5 40.5 60.0 60.0 60.0 60.0 60.0 60.0 60.0 6				
TATM	70.3 70.1 70.2 70.4 70.5 70.6 70.6	00000000000000000000000000000000000000	25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55 25.55	600.0 600.0 600.0 600.0 600.3 600.3				
PATM	14.399 14.399 14.399 14.399 14.399 14.399 14.399	14.27 14.27 14.27 14.27 14.27 14.27 14.27 14.27	14.28 14.28 14.28 14.28 14.28 14.28 14.28 14.28	14.32 14.32 14.32 14.32 14.32 14.32 14.32 14.32				
CORRECTED MASS FLOW	N N N N N N N N N N N N N N N N N N N	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	W W W W W W W W W W W W W W W W W	νννννννννννν 4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.				
VANE	000000000000000000000000000000000000000	100000000000000000000000000000000000000	333333333333333333333333333333333333333	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	7000			
STA.2.5 OCTANT	10 19 00 00 00 00 00 00 00 00 00	00 30 70 70 70 00 70 00 00 00 00 00	нанананана	a a a a a a a a a a a a a	1.475.5			
Į,	1659 1659 1659 1660 1661 1663 1665 1665	1671 1672 1673 1674 1675 1675 1677 1678 1679 1680 1680	1685 1684 1687 1688 1690 1691 1692 1694 1695	1699 1700 1701 1702 1703 1704 1705 1706 1709 1709	TO DESCRIPTION OF STREET			
267								

Ē	00000000000000000000000000000000000000	0.50 0.53 0.53 0.53 0.50 0.50 0.50 0.50	0.60 0.55 0.56 0.56 0.56 0.55 0.55 0.53	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
,	10.04 9.82 9.90 9.93 10.04 10.03 10.03 10.22	9.90 9.82 9.82 9.87 9.93 9.93 10.01 10.19	9.77 9.72 9.84 9.884 9.884 10.03	9.92 9.87 9.87 9.98 9.99 9.94 10.01 10.03
*	12.86 11.93 11.93 11.98 11.86 11.87 11.74 11.76 11.76 11.76 11.76	12.56 12.34 12.34 12.24 12.20 11.90 11.90 11.84 11.74 11.59	12.48 12.02 12.02 12.02 12.03 12.35 12.14 12.09 12.09 11.99 11.89	12.86 12.06 12.06 12.02 11.92 11.92 11.76 11.71 11.77
DWINL DROWE	199 198 1186 186 186 187 187 187 187 187 187 187 187 187 187	18.8 17.2 17.2 18.1 18.1 22.4 22.4 23.9 23.9	18.2 14.5 14.5 14.6 17.8 17.8 22.2 22.6 22.6 23.5	18.1 17.1 16.0 14.2 13.5 20.2 20.2 21.7 22.8 23.6 23.5 23.5
FC 10 P	7.7 2.0 2.0 3.0 3.0 3.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	115.7 123.1 123.1 13.0 13.0 13.0 13.0 13.0 13.0 13.0 1	7.7 115.1 23.1 38.5 4.6 53.9 691.6 691.6 92.4	7 11 12 13 13 13 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15
e E	00000000000000000000000000000000000000	00000000000000000000000000000000000000	00.00 00	00000000000000000000000000000000000000
Ç.	10.05 10.05 10.05 10.01 10.21 10.27 10.27 10.33	10.10 10.25 10.25 10.33 10.33 10.31 10.35 10.35	10.06 10.13 10.13 10.13 10.28 10.28 10.28 10.28 10.33	9.97 10.01 10.11 10.13 10.25 10.25 10.24 10.24 10.27
C	112.35 112.34 112.34 111.94 111.98 111.93 111.93	12.23 12.38 12.51 12.50 11.97 11.60 11.95 11.95 11.79	12.32 12.34 12.46 12.18 11.71 11.61 11.88 11.81 11.61	12.17 12.34 12.53 12.53 11.63 11.63 11.70 11.85 11.85 11.85
משוער ששפרה	22223333333333333333333333333333333333	21.7 17.8 17.8 10.6 20.1 30.8 32.1 29.8 27.6	21.7 16.7 19.6 19.6 31.8 32.0 27.3	21.3 16.9 17.6 17.6 19.9 33.3 33.8 33.2 27.3
50 F.A.	7 12 12 12 12 12 12 12 12 12 12 12 12 12	7 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2.5.2 2.2.2 3.22.9 3.80.9 5.3.2 6.0 91.8 91.8	7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
TATE	00044000000000000000000000000000000000	Დ Ს Ს Ს Ს Ს Ს Ს Ს Ს Ს Ს Ს Ს Ს Ს Ს Ს Ს Ს	62.5 61.9 61.7 61.7 61.6 61.6 61.5 62.2 62.2 62.2	6.56 66 66 66 66 66 66 66 66 66 66 66 66 6
FIGA			11222222222222222222222222222222222222	44444444444444444444444444444444444444
MASS FLOW		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ANGLE				
OCTANTS	๛๛๛๛๛๛๛๛๛		<u> </u>	ා ට රට
ţ	1713 1714 1716 1716 1719 1720 1720 1721 1721 1722 1723	1727 1728 1729 1730 1731 1732 1733 1735 1735 1735	1741 1742 1743 1744 1744 1744 1749 1750 1751 1751	1755 1756 1759 1759 1760 1760 1761 1763 1763 1763

00000000000000000000000000000000000000	00000000000000000000000000000000000000	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00.00 0.00.00 0.00.00 0.00.00 0.00.00 0.00.0
10.01 9.94 9.94 9.86 9.97 9.96 10.06 10.06	9.91 9.60 10.01 10.01 9.81 9.74 9.87 9.89 9.89	9.86 9.74 9.73 9.72 9.86 9.89 9.89 9.89	10.00 9.98 10.08 10.30 10.30 9.95 9.95 10.02 10.03
12.58 12.51 12.53 12.03 12.03 11.95 11.74 11.93 11.93	12.66 12.47 12.31 12.03 11.98 11.98 11.65 11.50 11.50	12.72 12.25 11.87 11.85 11.85 11.65 11.58 11.58	12.65 12.65 12.55 12.55 12.06 12.11 11.73 11.63 11.54 11.55
22222222222222222222222222222222222222	116.9 115.6 117.6 122.3 122.9 122.9 122.9 123.9	119.11 17.91 117.91 118.33 122.22 12.22 12.24 12.22 13.34 14.55	16.5 115.5 116.0 117.0 123.7 23.6 23.6 24.1
7.8 23.14 30.8 38.5 46.2 69.6 77.0	7.7 15.4 30.8 38.5 46.2 61.6 69.3 64.0	7.7 23.2 30.8 30.8 38.5 661.6 69.3 84.7	7.7 235.4 303.9 306.2 501.9 661.9 661.9 661.9
0.79 0.79 0.74 0.77 0.72 0.68 0.68	0.73 0.73 0.69 0.69 0.66 0.66 0.66	0.75 0.73 0.73 0.73 0.65 0.65	0.77 0.75 0.76 0.74 0.72 0.68 0.66
77.09 88.09 100 88.09 89.09 80.09 90.09	7.86 7.88 7.98 7.98 7.99 7.99 7.99 8.33 8.33 8.33 8.33	7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	88888888888888888888888888888888888888
12.29 12.28 12.21 12.21 12.21 11.98 11.86 11.67 11.55 11.55	11.21 11.32 11.38 11.08 10.08 10.01 11.05 11.13 11.13	12.02 11.702 11.66 11.83 11.83 11.87 11.87 11.49 11.45 11.45	11.00 12.03 12.03 12.04 12.13 11.69 11.69 11.33 11.33
0.000 0.000	0.4-1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	W W 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	00000000000000000000000000000000000000
15.7 15.7 18.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19	984 4 9 9 2 9 2 9 2 9 9 9 9 9 9 9 9 9 9 9	2011 2011 2011 2011 2011 2011 2011 2011	98 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
444444 444444 7755 7755 7755 7755 7755	66666666666666666666666666666666666666	66666666666666666666666666666666666666	44644444444444444444444444444444444444
		11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11111111111111111111111111111111111111
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
888888888888888888888888888888888888888	15 15 15 15 15 15 15	88888888888888888888888888888888888888	22 22 22 22 22 22 22 22 22 22 22 22 22
		ппппппппппппппппппппппппппппппппппппппп	00000000000000000000000000000000000000
1783 1784 1785 1786 1786 1788 1790 1790 1791 1791	1797 1798 1799 1800 1801 1802 1803 1804 1806 1806	1811 1812 1813 1813 1814 1815 1816 1819 1819 1820 1820	1825 1826 1827 1828 1829 1830 1831 1833 1833 1834

REFERENCES

- C. Rabe, W. W. Copenhaver, and M. S. Perry, "Acquisition of F100(3) High ssure Compressor Entrance Profiles," ASME Paper 82-GT-215, 1982
- Sieverding, "Advanced Testing Techniques in Turbomachines," <u>Von Karman</u> titute for Fluid Dymanics, Belgium, Lecture Series 78, Vol. 2, No. 56, April 5, pp. 14-18.
- H. Chue, "Pressure Probes for Fluid Measurements," Prog. Aerospace Sci., . 16, No. 2, 1975, pp. 147-223.
- L. McFadden, Experimental Investigation of Annular Cascade Performance, NPL-TR-79-2048, 1979.
- N. Krause, "Total Pressure Tube Averaging in Pulsating Flow," <u>ISA Transactions</u>, . 13, No. 2, 1974, pp. 142-148.
- N. Krause and G. C. Fralick, "Some Dynamic and Time Averaged Flow Measurements a Turbine Rig," <u>Journal of Engineering for Power</u>, Vol 10, January, 1980, pp. 1-224.
- Shaw and S. Edwards, F100(3) Core Engine, FX208-18 Compressor Performance nal Report Air Periods (11-25), Pratt & Whitney Aircraft Co. Internal Report, nuary 1978.
- D. Smith, <u>CRF-F100 Compressor Test Article Program Bi-Monthly Status Report</u>, 3, Contract Number F33615-80-C-2073, 20 Nov 1981.
- wes C. Dunavant, <u>Cascade Investigation of a Related Series of 6-Percent Thick</u> ide Vane Profiles and Design Charts, NACA TN 3959, May 1980.
- J. Kline and F. A. McClintock, "Describing Uncertainties in Single-Sample Periments," Mechanical Engineering Journal, January, 1953, pp. 3-8.

END

FILMED

9-85

DTIC